期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Predicting bathymetry based on vertical gravity gradient anomaly and analyses for various influential factors
1
作者 Huan Xu Jinhai Yu +3 位作者 Yanyan Zeng Qiuyu Wang Yuwei Tian Zhongmiao Sun 《Geodesy and Geodynamics》 EI CSCD 2024年第4期386-396,共11页
The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of verti... The prediction of bathymetry has advanced significantly with the development of satellite altimetry.However,the majority of its data originate from marine gravity anomaly.In this study,based on the expression of vertical gravity gradient(VGG)of a rectangular prism,the governing equations for determining sea depths to invert bathymetry.The governing equation is solved by linearization through an iterative process,and numerical simulations verify its algorithm and its stability.We also study the processing methods of different interference errors.The regularization method improves the stability of the inversion process for errors.A piecewise bilinear interpolation function roughly replaces the low-frequency error,and numerical simulations show that the accuracy can be improved by 41.2%after this treatment.For variable ocean crust density,simulation simulations verify that the root-mean-square(RMS)error of prediction is approximately 5 m for the sea depth of 6 km if density is chosen as the average one.Finally,two test regions in the South China Sea are predicted and compared with ship soundings data,RMS errors of predictions are 71.1 m and 91.4 m,respectively. 展开更多
关键词 Rectangular prism Vertical gravity gradient BATHYMETRY Numerical simulation Prediction error
下载PDF
Errors Prediction for Vector-to-Raster Conversion Based on Map Load and Cell Size 被引量:2
2
作者 LIAO Shunbao BAI Zhongqiang BAI Yan 《Chinese Geographical Science》 SCIE CSCD 2012年第6期695-704,共10页
Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to dev... Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to developing reasonable rasterization technical schemes and to making products of high quality.Analyzing and establishing a quantitative relationship between the error and its affecting factors is the key to error prediction.In this study,land cover data of China at a scale of 1:250 000 were taken as an example for analyzing the relationship between rasterization errors and the density of arc length(DA),the density of polygon(DP) and the size of grid cells(SG).Significant correlations were found between the errors and DA,DP and SG.The correlation coefficient(R2) of a model established based on samples collected in a small region(Beijing) reaches 0.95,and the value of R2 is equal to 0.91 while the model was validated with samples from the whole nation.On the other hand,the R2 of a model established based on nationwide samples reaches 0.96,and R2 is equal to 0.91 while it was validated with the samples in Beijing.These models depict well the relationships between rasterization errors and their affecting factors(DA,DP and SG).The analyzing method established in this study can be applied to effectively predicting rasterization errors in other cases as well. 展开更多
关键词 vector-to-raster conversion rasterization error prediction map load cell size
下载PDF
What Kind of Initial Errors Cause the Severest Prediction Uncertainty of E1 Nino in Zebiak-Cane Model 被引量:1
3
作者 徐辉 段晚锁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期577-584,共8页
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cau... With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOPtype errors, we find that for the normal states and the relatively weak E1 Nifio events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong E1 Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of E1 Nifio in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill. 展开更多
关键词 ENSO PREDICTABILITY prediction error optimal perturbation
下载PDF
ENSO Predictions in an Intermediate Coupled Model Influenced by Removing Initial Condition Errors in Sensitive Areas: A Target Observation Perspective 被引量:4
4
作者 Ling-Jiang TAO Chuan GAO Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第7期853-867,共15页
Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas(socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction s... Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas(socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction skill in the context of an optimal observing system. In this study, the impact on prediction skill is explored using an intermediate coupled model in which errors in initial conditions formed to make ENSO predictions are removed in certain areas. Based on ideal observing system simulation experiments, the importance of various observational networks on improvement of El Ni n?o prediction skill is examined. The results indicate that the initial states in the central and eastern equatorial Pacific are important to improve El Ni n?o prediction skill effectively. When removing the initial condition errors in the central equatorial Pacific, ENSO prediction errors can be reduced by 25%. Furthermore, combinations of various subregions are considered to demonstrate the efficiency on ENSO prediction skill. Particularly, seasonally varying observational networks are suggested to improve the prediction skill more effectively. For example, in addition to observing in the central equatorial Pacific and its north throughout the year,increasing observations in the eastern equatorial Pacific during April to October is crucially important, which can improve the prediction accuracy by 62%. These results also demonstrate the effectiveness of the conditional nonlinear optimal perturbation approach on detecting sensitive areas for target observations. 展开更多
关键词 El Nio prediction initial condition errors target observations
下载PDF
Robust Beamforming Under Channel Prediction Errors for Time-Varying MIMO System 被引量:1
5
作者 ZHU Yuting LI Zeng ZHANG Hongtao 《ZTE Communications》 2023年第3期77-85,共9页
The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-divis... The accuracy of acquired channel state information(CSI)for beamforming design is essential for achievable performance in multiple-input multiple-output(MIMO)systems.However,in a high-speed moving scene with time-division duplex(TDD)mode,the acquired CSI depending on the channel reciprocity is inevitably outdated,leading to outdated beamforming design and then performance degradation.In this paper,a robust beamforming design under channel prediction errors is proposed for a time-varying MIMO system to combat the degradation further,based on the channel prediction technique.Specifically,the statistical characteristics of historical channel prediction errors are exploited and modeled.Moreover,to deal with random error terms,deterministic equivalents are adopted to further explore potential beamforming gain through the statistical information and ultimately derive the robust design aiming at maximizing weighted sum-rate performance.Simulation results show that the proposed beamforming design can maintain outperformance during the downlink transmission time even when channels vary fast,compared with the traditional beamforming design. 展开更多
关键词 time-varying channels time-division duplex robust beamforming channel prediction errors weighted sum-rate maximization
下载PDF
Characterizing prediction errors of a new tree height model for cut-to-length Pinus radiata stems through the Burr TypeⅫdistribution
6
作者 Xinyu Cao Huiquan Bi +1 位作者 Duncan Watt Yun Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第6期1899-1914,共16页
Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionall... Unlike height-diameter equations for standing trees commonly used in forest resources modelling,tree height models for cut-to-length(CTL)stems tend to produce prediction errors whose distributions are not conditionally normal but are rather leptokurtic and heavy-tailed.This feature was merely noticed in previous studies but never thoroughly investigated.This study characterized the prediction error distribution of a newly developed such tree height model for Pin us radiata(D.Don)through the three-parameter Burr TypeⅫ(BⅫ)distribution.The model’s prediction errors(ε)exhibited heteroskedasticity conditional mainly on the small end relative diameter of the top log and also on DBH to a minor extent.Structured serial correlations were also present in the data.A total of 14 candidate weighting functions were compared to select the best two for weightingεin order to reduce its conditional heteroskedasticity.The weighted prediction errors(εw)were shifted by a constant to the positive range supported by the BXII distribution.Then the distribution of weighted and shifted prediction errors(εw+)was characterized by the BⅫdistribution using maximum likelihood estimation through 1000 times of repeated random sampling,fitting and goodness-of-fit testing,each time by randomly taking only one observation from each tree to circumvent the potential adverse impact of serial correlation in the data on parameter estimation and inferences.The nonparametric two sample Kolmogorov-Smirnov(KS)goodness-of-fit test and its closely related Kuiper’s(KU)test showed the fitted BⅫdistributions provided a good fit to the highly leptokurtic and heavy-tailed distribution ofε.Random samples generated from the fitted BⅫdistributions ofεw+derived from using the best two weighting functions,when back-shifted and unweighted,exhibited distributions that were,in about97 and 95%of the 1000 cases respectively,not statistically different from the distribution ofε.Our results for cut-tolength P.radiata stems represented the first case of any tree species where a non-normal error distribution in tree height prediction was described by an underlying probability distribution.The fitted BXII prediction error distribution will help to unlock the full potential of the new tree height model in forest resources modelling of P.radiata plantations,particularly when uncertainty assessments,statistical inferences and error propagations are needed in research and practical applications through harvester data analytics. 展开更多
关键词 Conditional heteroskedasticity Leptokurtic error distribution Skedactic function Nonlinear quantile regression Weighted prediction errors Serial correlation Random sampling and fitting Nonparametric goodnessof-fit tests
下载PDF
Modeling compatible single-tree aboveground biomass equations for masson pine(Pinus massoniana) in southern China 被引量:21
7
作者 ZENG Wei-sheng TANG Shou-zheng 《Journal of Forestry Research》 CAS CSCD 2012年第4期593-598,共6页
Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume... Because of global climate change, it is necessary to add forest biomass estimation to national forest resource monitoring. The biomass equations developed for forest biomass estimation should be compatible with volume equations. Based on the tree volume and aboveground biomass data of Masson pine (Pinus massoniana Lamb.) in southern China, we constructed one-, two- and three-variable aboveground biomass equations and biomass conversion functions compatible with tree volume equations by using error-in-variable simultaneous equations. The prediction precision of aboveground biomass estimates from one variable equa- tion exceeded 95%. The regressions of aboveground biomass equations were improved slightly when tree height and crown width were used together with diameter on breast height, although the contributions to regressions were statistically insignificant. For the biomass conversion function on one variable, the conversion factor decreased with increasing diameter, but for the conversion function on two variables, the conversion factor increased with increasing diameter but decreased with in- creasing tree height. 展开更多
关键词 aboveground biomass error-in-variable simultaneous equa- tions mean prediction error compatibility Pinus massoniana
下载PDF
Error Compensation of Thin Plate-shape Part with Prebending Method in Face Milling 被引量:10
8
作者 YI Wei JIANG Zhaoliang +2 位作者 SHAO Weixian HAN Xiangcheng LIU Wenping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第1期88-95,共8页
Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on t... Low weight and good toughness thin plate parts are widely used in modem industry, but its flexibility seriously impacts the machinability. Plenty of studies locus on the influence of machine tool and cutting tool on the machining errors. However, few researches focus on compensating machining errors through the fixture. In order to improve the machining accuracy of thin plate-shape part in face milling, this paper presents a novel method for compensating the surfacc errors by prebending the workpiece during the milling process. First, a machining error prediction model using finite element method is formulated, which simplifies the contacts between the workpiece and fixture with spring constraints. Milling fbrces calculated by the micro-unit cutting force model arc loaded on the error prediction model to predict the machining error. The error prediction results are substituted into the given formulas to obtain the prebending clamping forces and clamping positions. Consequently, the workpiece is prebent in terms of the calculated clamping forces and positions during the face milling operation to reduce the machining error. Finally, simulation and experimental tests are carried out to validate the correctness and efficiency of the proposed error compensation method. The experimental measured flatness results show that the flatness improves by approximately 30 percent through this error compensation method. The proposed mcthod not only predicts the machining errors in face milling thin plate-shape parts but also reduces the machining errors by taking full advantage of the workpiece prebending caused by fixture, meanwhile, it provides a novel idea and theoretical basis for reducing milling errors and improving the milling accuracy. 展开更多
关键词 face milling error prediction prebending error compensation FIXTURE
下载PDF
Redesigned Surface Based Machining Strategy and Method in Peripheral Milling of Thin-walled Parts 被引量:6
9
作者 JIA Zhenyuan GUO Qiang SUN Yuwen GUO Dongming 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第3期282-287,共6页
Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-ai... Currently, simultaneously ensuring the machining accuracy and efficiency of thin-walled structures especially high performance parts still remains a challenge. Existing compensating methods are mainly focusing on 3-aixs machining, which sometimes only take one given point as the compensative point at each given cutter location. This paper presents a redesigned surface based machining strategy for peripheral milling of thin-walled parts. Based on an improved cutting force/heat model and finite element method(FEM) simulation environment, a deflection error prediction model, which takes sequence of cutter contact lines as compensation targets, is established. And an iterative algorithm is presented to determine feasible cutter axis positions. The final redesigned surface is subsequently generated by skinning all discrete cutter axis vectors after compensating by using the proposed algorithm. The proposed machining strategy incorporates the thermo-mechanical coupled effect in deflection prediction, and is also validated with flank milling experiment by using five-axis machine tool. At the same time, the deformation error is detected by using three-coordinate measuring machine. Error prediction values and experimental results indicate that they have a good consistency and the proposed approach is able to significantly reduce the dimension error under the same machining conditions compared with conventional methods. The proposed machining strategy has potential in high-efficiency precision machining of thin-walled parts. 展开更多
关键词 redesigned surface tool path part deflection error prediction finite element method
下载PDF
Hurst Exponent Analysis of Financial Time Series 被引量:7
10
作者 SANG Hong wei, MA Tian, WANG Shuo zhong School of Communication and Information Engineering, Shanghai University, Shanghai 200072, China 《Journal of Shanghai University(English Edition)》 CAS 2001年第4期269-272,共4页
Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analy... Statistical properties of stock market time series and the implication of their Hurst exponents are discussed. Hurst exponents of DJIA (Dow Jones Industrial Average) components are tested using re scaled range analysis. In addition to the original stock return series, the linear prediction errors of the daily returns are also tested. Numerical results show that the Hurst exponent analysis can provide some information about the statistical properties of the financial time series. 展开更多
关键词 Hurst exponent linear prediction error financial time series
下载PDF
Extended Range(10–30 Days) Heavy Rain Forecasting Study Based on a Nonlinear Cross-Prediction Error Model 被引量:5
11
作者 XIA Zhiye CHEN Hongbin +1 位作者 XU Lisheng WANG Yongqian 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第12期1583-1591,共9页
Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combin... Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First, nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10-30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data. 展开更多
关键词 nonlinear cross prediction error extended range forecasting phase space
下载PDF
Ship motion extreme short time prediction of ship pitch based on diagonal recurrent neural network 被引量:3
12
作者 SHEN Yan XIE Mei-ping 《Journal of Marine Science and Application》 2005年第2期56-60,共5页
A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The prin... A DRNN (diagonal recurrent neural network) and its RPE (recurrent prediction error) learning algorithm are proposed in this paper .Using of the simple structure of DRNN can reduce the capacity of calculation. The principle of RPE learning algorithm is to adjust weights along the direction of Gauss-Newton. Meanwhile, it is unnecessary to calculate the second local derivative and the inverse matrixes, whose unbiasedness is proved. With application to the extremely short time prediction of large ship pitch, satisfactory results are obtained. Prediction effect of this algorithm is compared with that of auto-regression and periodical diagram method, and comparison results show that the proposed algorithm is feasible. 展开更多
关键词 extreme short time prediction diagonal recursive neural network recurrent prediction error learning algorithm UNBIASEDNESS
下载PDF
Impact of observational MJO forcing on ENSO predictability in the Zebiak-Cane model: PartⅠ.Effect on the maximum prediction error 被引量:4
13
作者 PENG Yuehua SONG Junqiang +1 位作者 XIANG Jie SUN Chengzhi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第5期39-45,共7页
With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational dat... With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation. 展开更多
关键词 E1 Nifio-Southern Oscillation (ENSO) Madden-/ulian Oscillation (M/O) maximum prediction error Conditional Nonlinear Optimal Perturbation (CNOP)
下载PDF
The“Spring Predictability Barrier” Phenomenon of ENSO Predictions Generated with the FGOALS-g Model 被引量:2
14
作者 WEI Chao DUAN Wan-Suo 《Atmospheric and Oceanic Science Letters》 2010年第2期87-92,共6页
Using the sea surface temperature (SST) predicted for the equatorial Pacific Ocean by the Flexible Global Ocean-Atmosphere-Land System Model-gamil (FGOALS-g), an analysis of the prediction errors was performed for... Using the sea surface temperature (SST) predicted for the equatorial Pacific Ocean by the Flexible Global Ocean-Atmosphere-Land System Model-gamil (FGOALS-g), an analysis of the prediction errors was performed for the seasonally dependent predictability of SST anomalies both for neutral years and for the growth/decay phase of El Nino/La Nina events. The study results indicated that for the SST predictions relating to the growth phase and the decay phase of El Nino events, the prediction errors have a seasonally dependent evolution. The largest increase in errors occurred in the spring season, which indicates that a prominent spring predictability barrier (SPB) occurs during an El Nino-Southern Oscillation (ENSO) warming episode. Furthermore, the SPB associated with the growth-phase prediction is more prominent than that associated with the decay-phase prediction. However, for the neutral years and for the growth and decay phases of La Nifia events, the SPB phenomenon was less prominent. These results indicate that the SPB phenomenon depends extensively on the ENSO events themselves. In particular, the SPB depends on the phases of the ENSO events. These results may provide useful knowledge for improving ENSO forecasting. 展开更多
关键词 ENSO event spring predictability barrier prediction error PREDICTABILITY
下载PDF
Reversible Data Hiding Based on Pixel-Value-Ordering and Pixel Block Merging Strategy 被引量:1
15
作者 Wengui Su Xiang Wang Yulong Shen 《Computers, Materials & Continua》 SCIE EI 2019年第6期925-941,共17页
With the reversible data hiding method based on pixel-value-ordering,data are embedded through the modification of the maximum and minimum values of a block.A significant relationship exists between the embedding perf... With the reversible data hiding method based on pixel-value-ordering,data are embedded through the modification of the maximum and minimum values of a block.A significant relationship exists between the embedding performance and the block size.Traditional pixel-value-ordering methods utilize pixel blocks with a fixed size to embed data;the smaller the pixel blocks,greater is the embedding capacity.However,it tends to result in the deterioration of the quality of the marked image.Herein,a novel reversible data hiding method is proposed by incorporating a block merging strategy into Li et al.’s pixel-value-ordering method,which realizes the dynamic control of block size by considering the image texture.First,the cover image is divided into non-overlapping 2×2 pixel blocks.Subsequently,according to their complexity,similarity and thresholds,these blocks are employed for data embedding through the pixel-value-ordering method directly or after being emerged into 2×4,4×2,or 4×4 sized blocks.Hence,smaller blocks can be used in the smooth region to create a high embedding capacity and larger blocks in the texture region to maintain a high peak signal-to-noise ratio.Experimental results prove that the proposed method is superior to the other three advanced methods.It achieves a high embedding capacity while maintaining low distortion and improves the embedding performance of the pixel-value-ordering algorithm. 展开更多
关键词 Reversible data hiding pixel-value-ordering prediction error expansion dynamic block partition
下载PDF
Reversible Data Hiding in Encrypted Images Based on Prediction and Adaptive Classification Scrambling 被引量:1
16
作者 Lingfeng Qu Hongjie He +1 位作者 Shanjun Zhang Fan Chen 《Computers, Materials & Continua》 SCIE EI 2020年第12期2623-2638,共16页
Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encr... Reversible data hiding in encrypted images(RDH-EI)technology is widely used in cloud storage for image privacy protection.In order to improve the embedding capacity of the RDH-EI algorithm and the security of the encrypted images,we proposed a reversible data hiding algorithm for encrypted images based on prediction and adaptive classification scrambling.First,the prediction error image is obtained by a novel prediction method before encryption.Then,the image pixel values are divided into two categories by the threshold range,which is selected adaptively according to the image content.Multiple high-significant bits of pixels within the threshold range are used for embedding data and pixel values outside the threshold range remain unchanged.The optimal threshold selected adaptively ensures the maximum embedding capacity of the algorithm.Moreover,the security of encrypted images can be improved by the combination of XOR encryption and classification scrambling encryption since the embedded data is independent of the pixel position.Experiment results demonstrate that the proposed method has higher embedding capacity compared with the current state-of-the-art methods for images with different texture complexity. 展开更多
关键词 Reversible data hiding classification scrambling prediction error multi-bits embedding
下载PDF
DOWNSCALING FORECAST OF MONTHLY PRECIPITATION OVER GUANGXI BASED ON BP NEURAL NETWORK MODEL 被引量:1
17
作者 何慧 金龙 +1 位作者 覃志年 袁丽军 《Journal of Tropical Meteorology》 SCIE 2007年第1期97-100,共4页
Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geop... Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geopotential height anomalous fields and their variables in June of 1958 - 2001, and determine comprehensive predictors by conducting empirical orthogonal function (EOF) respectively with the original predictors. A downscaling forecast model based on the back propagation (BP) neural network is built by use of the comprehensive predictors to predict the monthly precipitation in June over Guangxi with the monthly dynamic extended range forecast products. For comparison, we also build another BP neural network model with the same predictands by using the former comprehensive predictors selected from 500-hPa geopotential height anomalous fields in May to December of 1957 - 2000 and January to April of 1958 - 2001. The two models are tested and results show that the precision of superposition of the downscaling model is better than that of the one based on former comprehensive predictors, but the prediction accuracy of the downscaling model depends on the output of monthly dynamic extended range forecast. 展开更多
关键词 monthly dynamic extended range forecast neural network model downsealing forecast prediction error
下载PDF
Investigate Targeted Factors to Achieve Prediction Goal in Stroke Convalescence in Terms of Causal Relationships of Prediction Error 被引量:1
18
作者 Takashi Kimura 《Open Journal of Therapy and Rehabilitation》 2022年第4期244-256,共13页
Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke pa... Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke patients in the convalescent phase using the structural equation modeling (SEM) analysis. Methods: A total of 2992 stroke patients registered in the Japanese Rehabilitation Database were analyzed retrospectively. The prediction error was calculated based on a prognostic prediction formula proposed in a previous study. An exploratory factor analysis (EFA) then the factor was determined using confirmatory factorial analysis (CFA). Finally, multivariate analyses were performed using SEM analysis. Results: The fitted indices of the hypothesized model estimated based on EFA were confirmed by CFA. The factors estimated by EFA were applied, and interpreted as follows: “Transferring (T-factor),” “Dressing (D-factor),” and “Cognitive function (C-factor).” The fit of the structural model based on the three factors and prediction errors was supported by the SEM analysis. The effects of the D- and C-factors yielded similar causal relationships on prediction error. Meanwhile, the effects between the prediction error and the T-factor were low. Observed FIM items were related to their domains in the structural model, except for the dressing of the upper body and memory (p < 0.01). Conclusions: Transfer, which was not heavily considered in the previous prediction formula, was found in causal relationships with prediction error. It is suggested to intervene to transfer together with positive factors to recovery for achieving the prediction goal. 展开更多
关键词 Prediction Error Functional Independence Measure STROKE Convalescent Phase Structural Equation Modeling
下载PDF
A Meaningful Image Encryption Algorithm Based on Prediction Error and Wavelet Transform 被引量:1
19
作者 Mengling Zou Zhengxuan Liu Xianyi Chen 《Journal on Big Data》 2019年第3期151-158,共8页
Image encryption(IE)is a very useful and popular technology to protect the privacy of users.Most algorithms usually encrypt the original image into an image similar to texture or noise,but texture and noise are an obv... Image encryption(IE)is a very useful and popular technology to protect the privacy of users.Most algorithms usually encrypt the original image into an image similar to texture or noise,but texture and noise are an obvious visual indication that the image has been encrypted,which is more likely to cause the attacks of enemy.To overcome this shortcoming,many image encryption systems,which convert the original image into a carrier image with visual significance have been proposed.However,the generated cryptographic image still has texture features.In line with the idea of improving the visual quality of the final password images,we proposed a meaningful image hiding algorithm based on prediction error and discrete wavelet transform.Lots of experimental results and safety analysis show that the proposed algorithm can achieve high visual quality and ensure the security at the same time. 展开更多
关键词 Image encryption meaningful prediction error wavelet transform
下载PDF
Additive predictions of aboveground stand biomass in commercial logs and harvest residues for rotation age Pinus radiata plantations in New South Wales,Australia
20
作者 Xixi Qiao Huiquan Bi +4 位作者 Yun Li Fabiano Ximenes Christopher JWeston Liubov Volkova Mohammad Reza Ghaffariyan 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2265-2289,共25页
Two systems of additive equations were developed to predict aboveground stand level biomass in log products and harvest residue from routinely measured or predicted stand variables for Pinus radiata plantations in New... Two systems of additive equations were developed to predict aboveground stand level biomass in log products and harvest residue from routinely measured or predicted stand variables for Pinus radiata plantations in New South Wales,Australia.These plantations were managed under three thinning regimes or stand types before clear-felling at rotation age by cut-to-length harvesters to produce sawlogs and pulpwood.The residue material following a clear-fell operation mainly consisted of stumps,branches and treetops,short off-cut and waste sections due to stem deformity,defects,damage and breakage.One system of equations did not include dummy variables for stand types in the model specification and was intended for more general use in plantations where stand density management regimes were not the same as the stand types in our study.The other system that incorporated dummy variables was for stand type-specific applications.Both systems of equations were estimated using 61 plot-based estimates of biomass in commercial logs and residue components that were derived from systems of equations developed in situ for predicting the product and residue biomass of individual trees.To cater for all practical applications,two sets of parameters were estimated for each system of equations for predicting component and total aboveground stand biomass in fresh and dry weight respectively.The two sets of parameters for the system of equations without dummy variables were jointly estimated to improve statistical efficiency in parameter estimation.The predictive performances of the two systems of equations were benchmarked through a leave-one-plot-out cross validation procedure.They were generally superior to the performance of an alternative two-stage approach that combined an additive system for major components with an allocative system for sub-components.As using forest harvest residue biomass for bioenergy has increasingly become an integrated part of forestry,reliable estimates of product and residue biomass will assist harvest and management planning for clear-fell operations that integrate cut-to-length log production with residue harvesting. 展开更多
关键词 Plot-based biomass estimates Wood product Harvest residue BIOENERGY Systems of additive and allocative equations Prediction error variance functions
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部