期刊文献+
共找到1,145篇文章
< 1 2 58 >
每页显示 20 50 100
Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling 被引量:1
1
作者 Muhammad Nouman Amjad Raja Syed Taseer Abbas Jaffar +1 位作者 Abidhan Bardhan Sanjay Kumar Shukla 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期773-788,共16页
Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid ar... Settlement prediction of geosynthetic-reinforced soil(GRS)abutments under service loading conditions is an arduous and challenging task for practicing geotechnical/civil engineers.Hence,in this paper,a novel hybrid artificial intelligence(AI)-based model was developed by the combination of artificial neural network(ANN)and Harris hawks’optimisation(HHO),that is,ANN-HHO,to predict the settlement of the GRS abutments.Five other robust intelligent models such as support vector regression(SVR),Gaussian process regression(GPR),relevance vector machine(RVM),sequential minimal optimisation regression(SMOR),and least-median square regression(LMSR)were constructed and compared to the ANN-HHO model.The predictive strength,relalibility and robustness of the model were evaluated based on rigorous statistical testing,ranking criteria,multi-criteria approach,uncertainity analysis and sensitivity analysis(SA).Moreover,the predictive veracity of the model was also substantiated against several large-scale independent experimental studies on GRS abutments reported in the scientific literature.The acquired findings demonstrated that the ANN-HHO model predicted the settlement of GRS abutments with reasonable accuracy and yielded superior performance in comparison to counterpart models.Therefore,it becomes one of predictive tools employed by geotechnical/civil engineers in preliminary decision-making when investigating the in-service performance of GRS abutments.Finally,the model has been converted into a simple mathematical formulation for easy hand calculations,and it is proved cost-effective and less time-consuming in comparison to experimental tests and numerical simulations. 展开更多
关键词 Geosynthetic-reinforced soil(GRS) ABUTMENTS Settlement estimation Predictive modeling Artificial intelligence(AI) Artificial neural network(ANN)-Harris hawks’optimisation(HHO)
下载PDF
Predictive modeling for postoperative delirium in elderly patients with abdominal malignancies using synthetic minority oversampling technique 被引量:3
2
作者 Wen-Jing Hu Gang Bai +6 位作者 Yan Wang Dong-Mei Hong Jin-Hua Jiang Jia-Xun Li Yin Hua Xin-Yu Wang Ying Chen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第4期1227-1235,共9页
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn... BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance. 展开更多
关键词 Elderly patients Abdominal cancer Postoperative delirium Synthetic minority oversampling technique Predictive modeling Surgical outcomes
下载PDF
Validation and performance of three scoring systems for predicting primary non-function and early allograft failure after liver transplantation 被引量:1
3
作者 Yu Nie Jin-Bo Huang +5 位作者 Shu-Jiao He Hua-Di Chen Jun-Jun Jia Jing-Jing Li Xiao-Shun He Qiang Zhao 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2024年第5期463-471,共9页
Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipien... Background: Primary non-function(PNF) and early allograft failure(EAF) after liver transplantation(LT) seriously affect patient outcomes. In clinical practice, effective prognostic tools for early identifying recipients at high risk of PNF and EAF were urgently needed. Recently, the Model for Early Allograft Function(MEAF), PNF score by King's College(King-PNF) and Balance-and-Risk-Lactate(BAR-Lac) score were developed to assess the risks of PNF and EAF. This study aimed to externally validate and compare the prognostic performance of these three scores for predicting PNF and EAF. Methods: A retrospective study included 720 patients with primary LT between January 2015 and December 2020. MEAF, King-PNF and BAR-Lac scores were compared using receiver operating characteristic(ROC) and the net reclassification improvement(NRI) and integrated discrimination improvement(IDI) analyses. Results: Of all 720 patients, 28(3.9%) developed PNF and 67(9.3%) developed EAF in 3 months. The overall early allograft dysfunction(EAD) rate was 39.0%. The 3-month patient mortality was 8.6% while 1-year graft-failure-free survival was 89.2%. The median MEAF, King-PNF and BAR-Lac scores were 5.0(3.5–6.3),-2.1(-2.6 to-1.2), and 5.0(2.0–11.0), respectively. For predicting PNF, MEAF and King-PNF scores had excellent area under curves(AUCs) of 0.872 and 0.891, superior to BAR-Lac(AUC = 0.830). The NRI and IDI analyses confirmed that King-PNF score had the best performance in predicting PNF while MEAF served as a better predictor of EAD. The EAF risk curve and 1-year graft-failure-free survival curve showed that King-PNF was superior to MEAF and BAR-Lac scores for stratifying the risk of EAF. Conclusions: MEAF, King-PNF and BAR-Lac were validated as practical and effective risk assessment tools of PNF. King-PNF score outperformed MEAF and BAR-Lac in predicting PNF and EAF within 6 months. BAR-Lac score had a huge advantage in the prediction for PNF without post-transplant variables. Proper use of these scores will help early identify PNF, standardize grading of EAF and reasonably select clinical endpoints in relative studies. 展开更多
关键词 Primary non-function Early allograft failure Risk predicting model Liver transplantation
下载PDF
Development of a new Cox model for predicting long-term survival in hepatitis cirrhosis patients underwent transjugular intrahepatic portosystemic shunts 被引量:1
4
作者 Yi-Fan Lv Bing Zhu +8 位作者 Ming-Ming Meng Yi-Fan Wu Cheng-Bin Dong Yu Zhang Bo-Wen Liu Shao-Li You Sa Lv Yong-Ping Yang Fu-Quan Liu 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第2期491-502,共12页
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there hav... BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)placement is a procedure that can effectively treat complications of portal hypertension,such as variceal bleeding and refractory ascites.However,there have been no specific studies on predicting long-term survival after TIPS placement.AIM To establish a model to predict long-term survival in patients with hepatitis cirrhosis after TIPS.METHODS A retrospective analysis was conducted on a cohort of 224 patients who un-derwent TIPS implantation.Through univariate and multivariate Cox regression analyses,various factors were examined for their ability to predict survival at 6 years after TIPS.Consequently,a composite score was formulated,encompassing the indication,shunt reasonability,portal venous pressure gradient(PPG)after TIPS,percentage decrease in portal venous pressure(PVP),indocyanine green retention rate at 15 min(ICGR15)and total bilirubin(Tbil)level.Furthermore,the performance of the newly developed Cox(NDC)model was evaluated in an in-ternal validation cohort and compared with that of a series of existing models.RESULTS The indication(variceal bleeding or ascites),shunt reasonability(reasonable or unreasonable),ICGR15,post-operative PPG,percentage of PVP decrease and Tbil were found to be independent factors affecting long-term survival after TIPS placement.The NDC model incorporated these parameters and successfully identified patients at high risk,exhibiting a notably elevated mortality rate following the TIPS procedure,as observed in both the training and validation cohorts.Additionally,in terms of predicting the long-term survival rate,the performance of the NDC model was significantly better than that of the other four models[Child-Pugh,model for end-stage liver disease(MELD),MELD-sodium and the Freiburg index of post-TIPS survival].CONCLUSION The NDC model can accurately predict long-term survival after the TIPS procedure in patients with hepatitis cirrhosis,help identify high-risk patients and guide follow-up management after TIPS implantation. 展开更多
关键词 Transjugular intrahepatic portosystemic shunt Long-term survival Predictive model
下载PDF
Comparing gastrointestinal dysfunction score and acute gastrointestinal injury grade for predicting short-term mortality in critically ill patients
5
作者 Chao Shen Xi Wang +3 位作者 Yi-Ying Xiao Jia-Ying Zhang Guo-Lian Xia Rong-Lin Jiang 《World Journal of Gastroenterology》 SCIE CAS 2024年第42期4523-4531,共9页
BACKGROUND The prognosis of critically ill patients is closely linked to their gastrointestinal(GI)function.The acute GI injury(AGI)grading system,established in 2012,is extensively utilized to evaluate GI dysfunction... BACKGROUND The prognosis of critically ill patients is closely linked to their gastrointestinal(GI)function.The acute GI injury(AGI)grading system,established in 2012,is extensively utilized to evaluate GI dysfunction and forecast outcomes in clinical settings.In 2021,the GI dysfunction score(GIDS)was developed,building on the AGI grading system,to enhance the accuracy of GI dysfunction severity assessment,improve prognostic predictions,reduce subjectivity,and increase reproducibility.AIM To compare the predictive capabilities of GIDS and the AGI grading system for 28-day mortality in critically ill patients.METHODS A retrospective study was conducted at the general intensive care unit(ICU)of a regional university hospital.All data were collected during the first week of ICU admission.The primary outcome was 28-day mortality.Multivariable logistic regression analyzed whether GIDS and AGI grade were independent risk factors for 28-day mortality.The predictive abilities of GIDS and AGI grade were compared using the receiver operating characteristic curve,with DeLong’s test assessing differences between the curves’areas.RESULTS The incidence of AGI in the first week of ICU admission was 92.13%.There were 85 deaths(47.75%)within 28 days of ICU admission.There was no initial 24-hour difference in GIDS between the non-survival and survival groups.Both GIDS(OR 2.01,95%CI:1.25-3.24;P=0.004)and AGI grade(OR 1.94,95%CI:1.12-3.38;P=0.019)were independent predictors of 28-day mortality.No significant difference was found between the predictive accuracy of GIDS and AGI grade for 28-day mortality during the first week of ICU admission(Z=-0.26,P=0.794).CONCLUSION GIDS within the first 24 hours was an unreliable predictor of 28-day mortality.The predictive accuracy for 28-day mortality from both systems during the first week was comparable. 展开更多
关键词 Critical illness Gastrointestinal dysfunction Acute gastrointestinal injury Prognostic indicators Intensive care unit outcomes Mortality prediction Risk stratification Predictive modeling
下载PDF
Validation of prognostic scores for predicting acute liver failure and in-hospital death in patients with dengue-induced severe hepatitis
6
作者 Tongluk Teerasarntipan Kessarin Thanapirom +2 位作者 Roongruedee Chaiteerakij Piyawat Komolmit Sombat Treeprasertsuk 《World Journal of Gastroenterology》 SCIE CAS 2024年第45期4781-4790,共10页
BACKGROUND Acute liver failure(ALF)in dengue is rare but fatal.Early identification of patients who are at risk of ALF is the key strategy to improve survival.AIM To validate prognostic scores for predicting ALF and i... BACKGROUND Acute liver failure(ALF)in dengue is rare but fatal.Early identification of patients who are at risk of ALF is the key strategy to improve survival.AIM To validate prognostic scores for predicting ALF and in-hospital mortality in dengue-induced severe hepatitis(DISH).METHODS We retrospectively reviewed 2532 dengue patients over a period of 16 years(2007-2022).Patients with DISH,defined as transaminases>10 times the normal reference level and DISH with subsequent ALF,were included.Univariate regre-ssion analysis was used to identify factors associated with outcomes.Youden’s index in conjunction with receiver operating characteristic(ROC)analysis was used to determine optimal cut-off values for prognostic scores in predicting ALF and in-hospital death.Area under the ROC(AUROC)curve values were compared using paired data nonparametric ROC curve estimation.RESULTS Of 193 DISH patients,20 developed ALF(0.79%),with a mortality rate of 60.0%.International normalized ratio,bilirubin,albumin,and creatinine were indepen-dent predictors associated with ALF and death.Prognostic scores showed excel-lent performance:Model for end-stage liver disease(MELD)score≥15 predicted ALF(AUROC 0.917,sensitivity 90.0%,specificity 88.4%)and≥18 predicted death(AUROC 0.823,sensitivity 86.9%,specificity 89.1%);easy albumin-bilirubin(ALBI)score≥-30 predicted ALF and death(ALF:AUROC 0.835,sensitivity80.0%,specificity 72.2%;death:AUROC 0.808,sensitivity 76.9%,specificity 69.3%);ALBI score≥-2 predicted ALF and death(ALF:AUROC 0.806,sensitivity 80.0%,specificity 77.4%;death:AUROC 0.799,sensitivity 76.9%,specificity 74.3%).Platelet-ALBI score also showed good performance in predicting ALF and death(AUROC=0.786 and 0.699,respectively).MELD and EZ-ALBI scores had similar performance in predicting ALF(Z=1.688,P=0.091)and death(Z=0.322,P=0.747).CONCLUSION MELD score is the best predictor of ALF and death in DISH patients.EZ-ALBI score,a simpler yet effective score,shows promise as an alternative prognostic tool in dengue patients. 展开更多
关键词 FULMINANT Clinical outcomes Liver injury Prognostic assessment Predictive models Mortality prediction
下载PDF
Predicting hepatocellular carcinoma: A new non-invasive model based on shear wave elastography
7
作者 Dong Jiang Yi Qian +9 位作者 Yi-Jun Gu Ru Wang Hua Yu Hui Dong Dong-Yu Chen Yan Chen Hao-Zheng Jiang Bi-Bo Tan Min Peng Yi-Ran Li 《World Journal of Gastroenterology》 SCIE CAS 2024年第25期3166-3178,共13页
BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive mod... BACKGROUND Integrating conventional ultrasound features with 2D shear wave elastography(2D-SWE)can potentially enhance preoperative hepatocellular carcinoma(HCC)predictions.AIM To develop a 2D-SWE-based predictive model for preoperative identification of HCC.METHODS A retrospective analysis of 884 patients who underwent liver resection and pathology evaluation from February 2021 to August 2023 was conducted at the Oriental Hepatobiliary Surgery Hospital.The patients were divided into the modeling group(n=720)and the control group(n=164).The study included conventional ultrasound,2D-SWE,and preoperative laboratory tests.Multiple logistic regression was used to identify independent predictive factors for RESULTS In the modeling group analysis,maximal elasticity(Emax)of tumors and their peripheries,platelet count,cirrhosis,and blood flow were independent risk indicators for malignancies.These factors yielded an area under the curve of 0.77(95%confidence interval:0.73-0.81)with 84%sensitivity and 61%specificity.The model demonstrated good calibration in both the construction and validation cohorts,as shown by the calibration graph and Hosmer-Lemeshow test(P=0.683 and P=0.658,respectively).Additionally,the mean elasticity(Emean)of the tumor periphery was identified as a risk factor for microvascular invasion(MVI)in malignant liver tumors(P=0.003).Patients receiving antiviral treatment differed significantly in platelet count(P=0.002),Emax of tumors(P=0.033),Emean of tumors(P=0.042),Emax at tumor periphery(P<0.001),and Emean at tumor periphery(P=0.003).CONCLUSION 2D-SWE’s hardness value serves as a valuable marker for enhancing the preoperative diagnosis of malignant liver lesions,correlating significantly with MVI and antiviral treatment efficacy. 展开更多
关键词 Shear wave elastography predicting model Microvascular invasion Antiviral treatment Hepatocellular carcinoma
下载PDF
Predictive modeling for post operative delirium in elderly
8
作者 Chris B Lamprecht Abeer Dagra Brandon Lucke-Wold 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第9期3761-3764,共4页
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom... Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability. 展开更多
关键词 Post-operative delirium Elderly delirium Neurocognitive syndrome NEUROTRANSMITTERS Abdominal malignancy Predictive model Synthetic minority oversampling technique
下载PDF
Machine learning as a tool predicting short-term postoperative complications in Crohn’s disease patients undergoing intestinal resection: What frontiers?
9
作者 Raffaele Pellegrino Antonietta Gerarda Gravina 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第9期2755-2759,共5页
The recent study,“Predicting short-term major postoperative complications in intestinal resection for Crohn’s disease:A machine learning-based study”invest-igated the predictive efficacy of a machine learning model... The recent study,“Predicting short-term major postoperative complications in intestinal resection for Crohn’s disease:A machine learning-based study”invest-igated the predictive efficacy of a machine learning model for major postoperative complications within 30 days of surgery in Crohn’s disease(CD)patients.Em-ploying a random forest analysis and Shapley Additive Explanations,the study prioritizes factors such as preoperative nutritional status,operative time,and CD activity index.Despite the retrospective design’s limitations,the model’s robu-stness,with area under the curve values surpassing 0.8,highlights its clinical potential.The findings align with literature supporting preoperative nutritional therapy in inflammatory bowel diseases,emphasizing the importance of compre-hensive assessment and optimization.While a significant advancement,further research is crucial for refining preoperative strategies in CD patients. 展开更多
关键词 Machine learning Crohn’s disease Intestinal resection Postoperative complications Preoperative assessment Nutritional optimization Predictive model Gastrointestinal surgery SURGERY
下载PDF
Evaluation of preoperative blood markers for predicting intraabdominal infection during colorectal cancer resection:A commentary on recent findings
10
作者 Shi-Yan Zhang Juan Chen Na Cai 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第10期3371-3373,共3页
This commentary evaluates the study by Liu et al.This study investigates the predictive utility of the neutrophil-lymphocyte ratio,platelet-lymphocyte ratio,systemic immune-inflammation index,and carcinoembryonic anti... This commentary evaluates the study by Liu et al.This study investigates the predictive utility of the neutrophil-lymphocyte ratio,platelet-lymphocyte ratio,systemic immune-inflammation index,and carcinoembryonic antigen levels for post-operative intra-abdominal infection following colorectal cancer(CRC)surge-ry.The study highlights the critical need for analyzing diverse patient demogra-phics and delves into the potential impact of various confounding factors on the predictive accuracy of these markers.Additionally,the commentary advocates for the initiation of prospective studies aimed at validating and enhancing the clinical utility of these biomarkers in the context of CRC treatment.The commentary aims to underscore the importance of broadening the research framework to include a wider patient demographic and more comprehensive factor analyses,thereby enriching the predictive model's applicability and relevance in clinical settings. 展开更多
关键词 Neutrophil-lymphocyte ratio Platelet-lymphocyte ratio Systemic immune-inflammation index Carcinoembryonic antigen Intra-abdominal infection Colorectal cancer Predictive model Nomogram
下载PDF
Development and validation of a nomogram for predicting in-hospital mortality of intensive care unit patients with liver cirrhosis
11
作者 Xiao-Wei Tang Wen-Sen Ren +6 位作者 Shu Huang Kang Zou Huan Xu Xiao-Min Shi Wei Zhang Lei Shi Mu-Han Lü 《World Journal of Hepatology》 2024年第4期625-639,共15页
BACKGROUND Liver cirrhosis patients admitted to intensive care unit(ICU)have a high mortality rate.AIM To establish and validate a nomogram for predicting in-hospital mortality of ICU patients with liver cirrhosis.MET... BACKGROUND Liver cirrhosis patients admitted to intensive care unit(ICU)have a high mortality rate.AIM To establish and validate a nomogram for predicting in-hospital mortality of ICU patients with liver cirrhosis.METHODS We extracted demographic,etiological,vital sign,laboratory test,comorbidity,complication,treatment,and severity score data of liver cirrhosis patients from the Medical Information Mart for Intensive Care IV(MIMIC-IV)and electronic ICU(eICU)collaborative research database(eICU-CRD).Predictor selection and model building were based on the MIMIC-IV dataset.The variables selected through least absolute shrinkage and selection operator analysis were further screened through multivariate regression analysis to obtain final predictors.The final predictors were included in the multivariate logistic regression model,which was used to construct a nomogram.Finally,we conducted external validation using the eICU-CRD.The area under the receiver operating characteristic curve(AUC),decision curve,and calibration curve were used to assess the efficacy of the models.RESULTS Risk factors,including the mean respiratory rate,mean systolic blood pressure,mean heart rate,white blood cells,international normalized ratio,total bilirubin,age,invasive ventilation,vasopressor use,maximum stage of acute kidney injury,and sequential organ failure assessment score,were included in the multivariate logistic regression.The model achieved AUCs of 0.864 and 0.808 in the MIMIC-IV and eICU-CRD databases,respectively.The calibration curve also confirmed the predictive ability of the model,while the decision curve confirmed its clinical value.CONCLUSION The nomogram has high accuracy in predicting in-hospital mortality.Improving the included predictors may help improve the prognosis of patients. 展开更多
关键词 Liver cirrhosis Intensive care unit NOMOGRAM predicting model MORTALITY
下载PDF
Predicting short-term thromboembolic risk following Roux-en-Y gastric bypass using supervised machine learning
12
作者 Hassam Ali Faisal Inayat +10 位作者 Vishali Moond Ahtshamullah Chaudhry Arslan Afzal Zauraiz Anjum Hamza Tahir Muhammad Sajeel Anwar Dushyant Singh Dahiya Muhammad Sohaib Afzal Gul Nawaz Amir H Sohail Muhammad Aziz 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第4期1097-1108,共12页
BACKGROUND Roux-en-Y gastric bypass(RYGB)is a widely recognized bariatric procedure that is particularly beneficial for patients with class III obesity.It aids in significant weight loss and improves obesity-related m... BACKGROUND Roux-en-Y gastric bypass(RYGB)is a widely recognized bariatric procedure that is particularly beneficial for patients with class III obesity.It aids in significant weight loss and improves obesity-related medical conditions.Despite its effectiveness,postoperative care still has challenges.Clinical evidence shows that venous thromboembolism(VTE)is a leading cause of 30-d morbidity and mortality after RYGB.Therefore,a clear unmet need exists for a tailored risk assessment tool for VTE in RYGB candidates.AIM To develop and internally validate a scoring system determining the individualized risk of 30-d VTE in patients undergoing RYGB.METHODS Using the 2016–2021 Metabolic and Bariatric Surgery Accreditation Quality Improvement Program,data from 6526 patients(body mass index≥40 kg/m^(2))who underwent RYGB were analyzed.A backward elimination multivariate analysis identified predictors of VTE characterized by pulmonary embolism and/or deep venous thrombosis within 30 d of RYGB.The resultant risk scores were derived from the coefficients of statistically significant variables.The performance of the model was evaluated using receiver operating curves through 5-fold cross-validation.RESULTS Of the 26 initial variables,six predictors were identified.These included a history of chronic obstructive pulmonary disease with a regression coefficient(Coef)of 2.54(P<0.001),length of stay(Coef 0.08,P<0.001),prior deep venous thrombosis(Coef 1.61,P<0.001),hemoglobin A1c>7%(Coef 1.19,P<0.001),venous stasis history(Coef 1.43,P<0.001),and preoperative anticoagulation use(Coef 1.24,P<0.001).These variables were weighted according to their regression coefficients in an algorithm that was generated for the model predicting 30-d VTE risk post-RYGB.The risk model's area under the curve(AUC)was 0.79[95%confidence interval(CI):0.63-0.81],showing good discriminatory power,achieving a sensitivity of 0.60 and a specificity of 0.91.Without training,the same model performed satisfactorily in patients with laparoscopic sleeve gastrectomy with an AUC of 0.63(95%CI:0.62-0.64)and endoscopic sleeve gastroplasty with an AUC of 0.76(95%CI:0.75-0.78).CONCLUSION This simple risk model uses only six variables to assist clinicians in the preoperative risk stratification of RYGB patients,offering insights into factors that heighten the risk of VTE events. 展开更多
关键词 Roux-en-Y gastric bypass Venous thromboembolism Machine learning Bariatric surgery Predictive modeling
下载PDF
Undetermined modeling methods for predicting the transition of fresh and salt water interface
13
《Global Geology》 1998年第1期82-82,共1页
关键词 Undetermined modeling methods for predicting the transition of fresh and salt water interface
下载PDF
A machine learning approach for predictings stroke
14
作者 Yubo Fu 《Medical Data Mining》 2024年第3期8-16,共9页
Background:Stroke is one of the most dangerous and life-threatening disease as it can cause lasting brain damage,long-term disability,or even death.The early detection of warning signs of a stroke can help save the li... Background:Stroke is one of the most dangerous and life-threatening disease as it can cause lasting brain damage,long-term disability,or even death.The early detection of warning signs of a stroke can help save the life of a patient.In this paper,we adopted machine learning approaches to predict strokes and identify the three most important factors that are associated with strokes.Methods:This study used an open-access stroke prediction dataset.We developed 11 machine learning models and compare the results to those found in prior studies.Results:The accuracy,recall and area under the curve for the random forest model in our study is significantly higher than those of other studies.Machine learning models,particularly the random forest algorithm,can accurately predict the risk of stroke and support medical decision making.Conclusion:Our findings can be applied to design clinical prediction systems at the point of care. 展开更多
关键词 medical decision making machine learning predictive modeling STROKE imbalanced data
下载PDF
Modeling of Total Dissolved Solids (TDS) and Sodium Absorption Ratio (SAR) in the Edwards-Trinity Plateau and Ogallala Aquifers in the Midland-Odessa Region Using Random Forest Regression and eXtreme Gradient Boosting
15
作者 Azuka I. Udeh Osayamen J. Imarhiagbe Erepamo J. Omietimi 《Journal of Geoscience and Environment Protection》 2024年第5期218-241,共24页
Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. ... Efficient water quality monitoring and ensuring the safety of drinking water by government agencies in areas where the resource is constantly depleted due to anthropogenic or natural factors cannot be overemphasized. The above statement holds for West Texas, Midland, and Odessa Precisely. Two machine learning regression algorithms (Random Forest and XGBoost) were employed to develop models for the prediction of total dissolved solids (TDS) and sodium absorption ratio (SAR) for efficient water quality monitoring of two vital aquifers: Edward-Trinity (plateau), and Ogallala aquifers. These two aquifers have contributed immensely to providing water for different uses ranging from domestic, agricultural, industrial, etc. The data was obtained from the Texas Water Development Board (TWDB). The XGBoost and Random Forest models used in this study gave an accurate prediction of observed data (TDS and SAR) for both the Edward-Trinity (plateau) and Ogallala aquifers with the R<sup>2</sup> values consistently greater than 0.83. The Random Forest model gave a better prediction of TDS and SAR concentration with an average R, MAE, RMSE and MSE of 0.977, 0.015, 0.029 and 0.00, respectively. For the XGBoost, an average R, MAE, RMSE, and MSE of 0.953, 0.016, 0.037 and 0.00, respectively, were achieved. The overall performance of the models produced was impressive. From this study, we can clearly understand that Random Forest and XGBoost are appropriate for water quality prediction and monitoring in an area of high hydrocarbon activities like Midland and Odessa and West Texas at large. 展开更多
关键词 Water Quality Prediction Predictive modeling Aquifers Machine Learning Regression eXtreme Gradient Boosting
下载PDF
Development of a machine learning model for predicting abnormalities of commercial airplanes
16
作者 Rossi Passarella Siti Nurmaini +2 位作者 Muhammad Naufal Rachmatullah Harumi Veny Fara Nissya Nur Hafidzoh 《Data Science and Management》 2024年第3期256-265,共10页
Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary ... Airplanes are a social necessity for movement of humans,goods,and other.They are generally safe modes of transportation;however,incidents and accidents occasionally occur.To prevent aviation accidents,it is necessary to develop a machine-learning model to detect and predict commercial flights using automatic dependent surveillance–broadcast data.This study combined data-quality detection,anomaly detection,and abnormality-classification-model development.The research methodology involved the following stages:problem statement,data selection and labeling,prediction-model development,deployment,and testing.The data labeling process was based on the rules framed by the international civil aviation organization for commercial,jet-engine flights and validated by expert commercial pilots.The results showed that the best prediction model,the quadratic-discriminant-analysis,was 93%accurate,indicating a“good fit”.Moreover,the model’s area-under-the-curve results for abnormal and normal detection were 0.97 and 0.96,respectively,thus confirming its“good fit”. 展开更多
关键词 Automatic dependent surveillance-broadcast data Commercial airplanes accident Data-labeling Machine learning Prediction model
下载PDF
Predicting TBM penetration rate in hard rock condition:A comparative study among six XGB-based metaheuristic techniques 被引量:26
17
作者 Jian Zhou Yingui Qiu +4 位作者 Danial Jahed Armaghani Wengang Zhang Chuanqi Li Shuangli Zhu Reza Tarinejad 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第3期201-213,共13页
A reliable and accurate prediction of the tunnel boring machine(TBM)performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects.This research aims to develop six ... A reliable and accurate prediction of the tunnel boring machine(TBM)performance can assist in minimizing the relevant risks of high capital costs and in scheduling tunneling projects.This research aims to develop six hybrid models of extreme gradient boosting(XGB)which are optimized by gray wolf optimization(GWO),particle swarm optimization(PSO),social spider optimization(SSO),sine cosine algorithm(SCA),multi verse optimization(MVO)and moth flame optimization(MFO),for estimation of the TBM penetration rate(PR).To do this,a comprehensive database with 1286 data samples was established where seven parameters including the rock quality designation,the rock mass rating,Brazilian tensile strength(BTS),rock mass weathering,the uniaxial compressive strength(UCS),revolution per minute and trust force per cutter(TFC),were set as inputs and TBM PR was selected as model output.Together with the mentioned six hybrid models,four single models i.e.,artificial neural network,random forest regression,XGB and support vector regression were also built to estimate TBM PR for comparison purposes.These models were designed conducting several parametric studies on their most important parameters and then,their performance capacities were assessed through the use of root mean square error,coefficient of determination,mean absolute percentage error,and a10-index.Results of this study confirmed that the best predictive model of PR goes to the PSO-XGB technique with system error of(0.1453,and 0.1325),R^(2) of(0.951,and 0.951),mean absolute percentage error(4.0689,and 3.8115),and a10-index of(0.9348,and 0.9496)in training and testing phases,respectively.The developed hybrid PSO-XGB can be introduced as an accurate,powerful and applicable technique in the field of TBM performance prediction.By conducting sensitivity analysis,it was found that UCS,BTS and TFC have the deepest impacts on the TBM PR. 展开更多
关键词 TBM penetration rate Hard rock XGB-based hybrid model Predictive model Metaheuristic optimization
下载PDF
Nomograms and risk score models for predicting survival in rectal cancer patients with neoadjuvant therapy 被引量:8
18
作者 Fang-Ze Wei Shi-Wen Mei +6 位作者 Jia-Nan Chen Zhi-Jie Wang Hai-Yu Shen Juan Li Fu-Qiang Zhao Zheng Liu Qian Liu 《World Journal of Gastroenterology》 SCIE CAS 2020年第42期6638-6657,共20页
BACKGROUND Colorectal cancer is a common digestive cancer worldwide.As a comprehensive treatment for locally advanced rectal cancer(LARC),neoadjuvant therapy(NT)has been increasingly used as the standard treatment for... BACKGROUND Colorectal cancer is a common digestive cancer worldwide.As a comprehensive treatment for locally advanced rectal cancer(LARC),neoadjuvant therapy(NT)has been increasingly used as the standard treatment for clinical stage II/III rectal cancer.However,few patients achieve a complete pathological response,and most patients require surgical resection and adjuvant therapy.Therefore,identifying risk factors and developing accurate models to predict the prognosis of LARC patients are of great clinical significance.AIM To establish effective prognostic nomograms and risk score prediction models to predict overall survival(OS)and disease-free survival(DFS)for LARC treated with NT.METHODS Nomograms and risk factor score prediction models were based on patients who received NT at the Cancer Hospital from 2015 to 2017.The least absolute shrinkage and selection operator regression model were utilized to screen for prognostic risk factors,which were validated by the Cox regression method.Assessment of the performance of the two prediction models was conducted using receiver operating characteristic curves,and that of the two nomograms was conducted by calculating the concordance index(C-index)and calibration curves.The results were validated in a cohort of 65 patients from 2015 to 2017.RESULTS Seven features were significantly associated with OS and were included in the OS prediction nomogram and prediction model:Vascular_tumors_bolt,cancer nodules,yN,body mass index,matchmouth distance from the edge,nerve aggression and postoperative carcinoembryonic antigen.The nomogram showed good predictive value for OS,with a C-index of 0.91(95%CI:0.85,0.97)and good calibration.In the validation cohort,the C-index was 0.69(95%CI:0.53,0.84).The risk factor prediction model showed good predictive value.The areas under the curve for 3-and 5-year survival were 0.811 and 0.782.The nomogram for predicting DFS included ypTNM and nerve aggression and showed good calibration and a C-index of 0.77(95%CI:0.69,0.85).In the validation cohort,the C-index was 0.71(95%CI:0.61,0.81).The prediction model for DFS also had good predictive value,with an AUC for 3-year survival of 0.784 and an AUC for 5-year survival of 0.754.CONCLUSION We established accurate nomograms and prediction models for predicting OS and DFS in patients with LARC after undergoing NT. 展开更多
关键词 Neoadjuvant therapy Rectal cancer NOMOGRAM Overall survival Diseasefree survival Risk factor score prediction model
下载PDF
Predicting the height of water-flow fractured zone during coal mining under the Xiaolangdi Reservoir 被引量:6
19
作者 XU Zhimin SUN Yajun +2 位作者 DONG Qinghong ZHANG Guowei LI Shi 《Mining Science and Technology》 EI CAS 2010年第3期434-438,共5页
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu... It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs. 展开更多
关键词 coal mining under reservoir water-flow fractured zone development law water inrush of mine predicting model
下载PDF
Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma 被引量:4
20
作者 Yu-Bo Zhang Gang Yang +3 位作者 Yang Bu Peng Lei Wei Zhang Dan-Yang Zhang 《World Journal of Gastroenterology》 SCIE CAS 2023年第43期5804-5817,共14页
BACKGROUND Surgical resection is the primary treatment for hepatocellular carcinoma(HCC).However,studies indicate that nearly 70%of patients experience HCC recurrence within five years following hepatectomy.The earlie... BACKGROUND Surgical resection is the primary treatment for hepatocellular carcinoma(HCC).However,studies indicate that nearly 70%of patients experience HCC recurrence within five years following hepatectomy.The earlier the recurrence,the worse the prognosis.Current studies on postoperative recurrence primarily rely on postoperative pathology and patient clinical data,which are lagging.Hence,developing a new pre-operative prediction model for postoperative recurrence is crucial for guiding individualized treatment of HCC patients and enhancing their prognosis.AIM To identify key variables in pre-operative clinical and imaging data using machine learning algorithms to construct multiple risk prediction models for early postoperative recurrence of HCC.METHODS The demographic and clinical data of 371 HCC patients were collected for this retrospective study.These data were randomly divided into training and test sets at a ratio of 8:2.The training set was analyzed,and key feature variables with predictive value for early HCC recurrence were selected to construct six different machine learning prediction models.Each model was evaluated,and the bestperforming model was selected for interpreting the importance of each variable.Finally,an online calculator based on the model was generated for daily clinical practice.RESULTS Following machine learning analysis,eight key feature variables(age,intratumoral arteries,alpha-fetoprotein,preoperative blood glucose,number of tumors,glucose-to-lymphocyte ratio,liver cirrhosis,and pre-operative platelets)were selected to construct six different prediction models.The XGBoost model outperformed other models,with the area under the receiver operating characteristic curve in the training,validation,and test datasets being 0.993(95%confidence interval:0.982-1.000),0.734(0.601-0.867),and 0.706(0.585-0.827),respectively.Calibration curve and decision curve analysis indicated that the XGBoost model also had good predictive performance and clinical application value.CONCLUSION The XGBoost model exhibits superior performance and is a reliable tool for predicting early postoperative HCC recurrence.This model may guide surgical strategies and postoperative individualized medicine. 展开更多
关键词 Machine learning Hepatocellular carcinoma Early recurrence Risk prediction models Imaging features Clinical features
下载PDF
上一页 1 2 58 下一页 到第
使用帮助 返回顶部