期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Online Predictive Monitoring and Prediction Model for a Periodic Process Through Multiway Non-Gaussian Modeling 被引量:3
1
作者 Changkyoo Yoo Minhan Kim Sunjin Hwang Yongmin Jo Jongmin Oh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期48-51,共4页
A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling... A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods. 展开更多
关键词 inferential sensing multiway modeling non-Gaussian distribution online predictive monitoring process supervision wastewater treatment process
下载PDF
Multiple Regression and Big Data Analysis for Predictive Emission Monitoring Systems
2
作者 Zinovi Krougly Vladimir Krougly Serge Bays 《Applied Mathematics》 2023年第5期386-410,共25页
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple... Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant. 展开更多
关键词 Matrix Algebra in Multiple Linear Regression Numerical Integration High Precision Computation Applications in Predictive Emission monitoring Systems
下载PDF
Multi-Perspective Data Fusion Framework Based on Hierarchical BERT: Provide Visual Predictions of Business Processes
3
作者 Yongwang Yuan Xiangwei Liu Ke Lu 《Computers, Materials & Continua》 SCIE EI 2024年第1期1227-1252,共26页
Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited ... Predictive Business Process Monitoring(PBPM)is a significant research area in Business Process Management(BPM)aimed at accurately forecasting future behavioral events.At present,deep learning methods are widely cited in PBPM research,but no method has been effective in fusing data information into the control flow for multi-perspective process prediction.Therefore,this paper proposes a process prediction method based on the hierarchical BERT and multi-perspective data fusion.Firstly,the first layer BERT network learns the correlations between different category attribute data.Then,the attribute data is integrated into a weighted event-level feature vector and input into the second layer BERT network to learn the impact and priority relationship of each event on future predicted events.Next,the multi-head attention mechanism within the framework is visualized for analysis,helping to understand the decision-making logic of the framework and providing visual predictions.Finally,experimental results show that the predictive accuracy of the framework surpasses the current state-of-the-art research methods and significantly enhances the predictive performance of BPM. 展开更多
关键词 Business process prediction monitoring deep learning attention mechanism BERT multi-perspective
下载PDF
A case of AML after allo-PBSCT whose microchimerism status in microsate llite DNA markers was monitored for prediction of early relapse and evaluation of effectiveness of DLI treatment
4
《中国输血杂志》 CAS CSCD 2001年第S1期413-,共1页
关键词 AML A case of AML after allo-PBSCT whose microchimerism status in microsate llite DNA markers was monitored for prediction of early relapse and evaluation of effectiveness of DLI treatment DNA CASE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部