期刊文献+
共找到2,510篇文章
< 1 2 126 >
每页显示 20 50 100
Uncertainties of landslide susceptibility prediction: Influences of random errors in landslide conditioning factors and errors reduction by low pass filter method 被引量:2
1
作者 Faming Huang Zuokui Teng +4 位作者 Chi Yao Shui-Hua Jiang Filippo Catani Wei Chen Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期213-230,共18页
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a... In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors. 展开更多
关键词 Landslide susceptibility prediction Conditioning factor errors Low-pass filter method Machine learning models Interpretability analysis
下载PDF
Uncertainties in landslide susceptibility prediction:Influence rule of different levels of errors in landslide spatial position 被引量:2
2
作者 Faming Huang Ronghui Li +3 位作者 Filippo Catani Xiaoting Zhou Ziqiang Zeng Jinsong Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4177-4191,共15页
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ... The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies. 展开更多
关键词 Landslide susceptibility prediction Random landslide position errors Uncertainty analysis Multi-layer perceptron Random forest Semi-supervised machine learning
下载PDF
Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis
3
作者 Jing Gao Mingxuan Ji +1 位作者 Hongjiang Wang Zhongxiao Du 《Computers, Materials & Continua》 SCIE EI 2024年第6期5017-5030,共14页
With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m... With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method. 展开更多
关键词 Short-term wind power prediction deep hybrid kernel extreme learning machine incremental learning error clustering
下载PDF
Residual lifetime prediction model of nonlinear accelerated degradation data with measurement error 被引量:12
4
作者 Zhongyi Cai Yunxiang Chen +1 位作者 Qiang Zhang Huachun Xiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期1028-1038,共11页
For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is ... For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model. 展开更多
关键词 accelerated degradation test residual lifetime (RL) prediction measurement error random effect NONLINEARITY
下载PDF
Initial Error-induced Optimal Perturbations in ENSO Predictions, as Derived from an Intermediate Coupled Model 被引量:6
5
作者 Ling-Jiang TAO Rong-Hua ZHANG Chuan GAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第6期791-803,共13页
The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (C... The initial errors constitute one of the main limiting factors in the ability to predict the E1 Nino-Southem Oscillation (ENSO) in ocean-atmosphere coupled models. The conditional nonlinear optimal perturbation (CNOP) approach was em- ployed to study the largest initial error growth in the E1 Nino predictions of an intermediate coupled model (ICM). The optimal initial errors (as represented by CNOPs) in sea surface temperature anomalies (SSTAs) and sea level anomalies (SLAs) were obtained with seasonal variation. The CNOP-induced perturbations, which tend to evolve into the La Nifia mode, were found to have the same dynamics as ENSO itself. This indicates that, if CNOP-type errors are present in the initial conditions used to make a prediction of E1 Nino, the E1 Nino event tends to be under-predicted. In particular, compared with other seasonal CNOPs, the CNOPs in winter can induce the largest error growth, which gives rise to an ENSO amplitude that is hardly ever predicted accurately. Additionally, it was found that the CNOP-induced perturbations exhibit a strong spring predictability barrier (SPB) phenomenon for ENSO prediction. These results offer a way to enhance ICM prediction skill and, particularly, weaken the SPB phenomenon by filtering the CNOP-type errors in the initial state. The characteristic distributions of the CNOPs derived from the ICM also provide useful information for targeted observations through data assimilation. Given the fact that the derived CNOPs are season-dependent, it is suggested that seasonally varying targeted observations should be implemented to accurately predict ENSO events. 展开更多
关键词 E1 Nino predictability initial errors intermediate coupled model spring predictability barrier
下载PDF
Optimal Initial Error Growth in the Prediction of the Kuroshio Large Meander Based on a High-resolution Regional Ocean Model 被引量:4
6
作者 Xia LIU Qiang WANG Mu MU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第11期1362-1371,共10页
Based on the high-resolution Regional Ocean Modeling System(ROMS) and the conditional nonlinear optimal perturbation(CNOP) method, this study explored the effects of optimal initial errors on the prediction of the Kur... Based on the high-resolution Regional Ocean Modeling System(ROMS) and the conditional nonlinear optimal perturbation(CNOP) method, this study explored the effects of optimal initial errors on the prediction of the Kuroshio large meander(LM) path, and the growth mechanism of optimal initial errors was revealed. For each LM event, two types of initial error(denoted as CNOP1 and CNOP2) were obtained. Their large amplitudes were found located mainly in the upper 2500 m in the upstream region of the LM, i.e., southeast of Kyushu. Furthermore, we analyzed the patterns and nonlinear evolution of the two types of CNOP. We found CNOP1 tends to strengthen the LM path through southwestward extension. Conversely,CNOP2 has almost the opposite pattern to CNOP1, and it tends to weaken the LM path through northeastward contraction.The growth mechanism of optimal initial errors was clarified through eddy-energetics analysis. The results indicated that energy from the background field is transferred to the error field because of barotropic and baroclinic instabilities. Thus, it is inferred that both barotropic and baroclinic processes play important roles in the growth of CNOP-type optimal initial errors. 展开更多
关键词 KUROSHIO LARGE MEANDER predictability ROMS OPTIMAL INITIAL error growth
下载PDF
Analogue correction method of errors and its application to numerical weather prediction 被引量:9
7
作者 高丽 任宏利 +1 位作者 李建平 丑纪范 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期882-889,共8页
In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can eff... In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model. 展开更多
关键词 numerical weather prediction analogue correction method of errors reference state analogue-dynamical model
下载PDF
Possible Sources of Forecast Errors Generated by the Global/Regional Assimilation and Prediction System for Landfalling Tropical Cyclones. Part Ⅱ: Model Uncertainty 被引量:3
8
作者 Feifan ZHOU Wansuo DUAN +1 位作者 He ZHANG Munehiko YAMAGUCHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第10期1277-1290,共14页
This paper investigates the possible sources of errors associated with tropical cyclone(TC) tracks forecasted using the Global/Regional Assimilation and Prediction System(GRAPES). In Part I, it is shown that the model... This paper investigates the possible sources of errors associated with tropical cyclone(TC) tracks forecasted using the Global/Regional Assimilation and Prediction System(GRAPES). In Part I, it is shown that the model error of GRAPES may be the main cause of poor forecasts of landfalling TCs. Thus, a further examination of the model error is the focus of Part II.Considering model error as a type of forcing, the model error can be represented by the combination of good forecasts and bad forecasts. Results show that there are systematic model errors. The model error of the geopotential height component has periodic features, with a period of 24 h and a global pattern of wavenumber 2 from west to east located between 60?S and 60?N. This periodic model error presents similar features as the atmospheric semidiurnal tide, which reflect signals from tropical diabatic heating, indicating that the parameter errors related to the tropical diabatic heating may be the source of the periodic model error. The above model errors are subtracted from the forecast equation and a series of new forecasts are made. The average forecasting capability using the rectified model is improved compared to simply improving the initial conditions of the original GRAPES model. This confirms the strong impact of the periodic model error on landfalling TC track forecasts. Besides, if the model error used to rectify the model is obtained from an examination of additional TCs, the forecasting capabilities of the corresponding rectified model will be improved. 展开更多
关键词 GRAPES error diagnosis model uncertainty predictABILITY TROPICAL CYCLONE
下载PDF
Extended Range(10–30 Days) Heavy Rain Forecasting Study Based on a Nonlinear Cross-Prediction Error Model 被引量:5
9
作者 XIA Zhiye CHEN Hongbin +1 位作者 XU Lisheng WANG Yongqian 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第12期1583-1591,共9页
Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combin... Extended range (10-30 d) heavy rain forecasting is difficult but performs an important function in disaster prevention and mitigation. In this paper, a nonlinear cross prediction error (NCPE) algorithm that combines nonlinear dynamics and statistical methods is proposed. The method is based on phase space reconstruction of chaotic single-variable time series of precipitable water and is tested in 100 global cases of heavy rain. First, nonlinear relative dynamic error for local attractor pairs is calculated at different stages of the heavy rain process, after which the local change characteristics of the attractors are analyzed. Second, the eigen-peak is defined as a prediction indicator based on an error threshold of about 1.5, and is then used to analyze the forecasting validity period. The results reveal that the prediction indicator features regarded as eigenpeaks for heavy rain extreme weather are all reflected consistently, without failure, based on the NCPE model; the prediction validity periods for 1-2 d, 3-9 d and 10-30 d are 4, 22 and 74 cases, respectively, without false alarm or omission. The NCPE model developed allows accurate forecasting of heavy rain over an extended range of 10-30 d and has the potential to be used to explore the mechanisms involved in the development of heavy rain according to a segmentation scale. This novel method provides new insights into extended range forecasting and atmospheric predictability, and also allows the creation of multi-variable chaotic extreme weather prediction models based on high spatiotemporal resolution data. 展开更多
关键词 nonlinear cross prediction error extended range forecasting phase space
下载PDF
An approach to estimating and extrapolating model error based on inverse problem methods:towards accurate numerical weather prediction 被引量:4
10
作者 胡淑娟 邱春雨 +3 位作者 张利云 黄启灿 于海鹏 丑纪范 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期669-677,共9页
Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can ... Model error is one of the key factors restricting the accuracy of numerical weather prediction (NWP). Considering the continuous evolution of the atmosphere, the observed data (ignoring the measurement error) can be viewed as a series of solutions of an accurate model governing the actual atmosphere. Model error is represented as an unknown term in the accurate model, thus NWP can be considered as an inverse problem to uncover the unknown error term. The inverse problem models can absorb long periods of observed data to generate model error correction procedures. They thus resolve the deficiency and faultiness of the NWP schemes employing only the initial-time data. In this study we construct two inverse problem models to estimate and extrapolate the time-varying and spatial-varying model errors in both the historical and forecast periods by using recent observations and analogue phenomena of the atmosphere. Numerical experiment on Burgers' equation has illustrated the substantial forecast improvement using inverse problem algorithms. The proposed inverse problem methods of suppressing NWP errors will be useful in future high accuracy applications of NWP. 展开更多
关键词 numerical weather prediction model error past data inverse problem
下载PDF
Possible Sources of Forecast Errors Generated by the Global/Regional Assimilation and Prediction System for Landfalling Tropical Cyclones.PartⅠ:Initial Uncertainties 被引量:4
11
作者 Feifan ZHOU Munehiko YAMAGUCHI Xiaohao QIN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第7期841-851,共11页
This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made ... This paper investigates the possible sources of errors associated with tropical cyclone (TC) tracks forecasted using the Global/Regional Assimilation and Prediction System (GRAPES). The GRAPES forecasts were made for 16 landfaIling TCs in the western North Pacific basin during the 2008 and 2009 seasons, with a forecast length of 72 hours, and using the default initial conditions ("initials", hereafter), which are from the NCEP-FNL dataset, as well as ECMWF initials. The forecasts are compared with ECMWF forecasts. The results show that in most TCs, the GRAPES forecasts are improved when using the ECMWF initials compared with the default initials. Compared with the ECMWF initials, the default initials produce lower intensity TCs and a lower intensity subtropical high, but a higher intensity South Asia high and monsoon trough, as well as a higher temperature but lower specific humidity at the TC center. Replacement of the geopotential height and wind fields with the ECMWF initials in and around the TC center at the initial time was found to be the most efficient way to improve the forecasts. In addition, TCs that showed the greatest improvement in forecast accuracy usually had the largest initial uncertainties in TC intensity and were usually in the intensifying phase. The results demonstrate the importance of the initial intensity for TC track forecasts made using GRAPES, and indicate the model is better in describing the intensifying phase than the decaying phase of TCs. Finally, the limit of the improvement indicates that the model error associated with GRAPES forecasts may be the main cause of poor forecasts of landfalling TCs. Thus, further examinations of the model errors are required. 展开更多
关键词 tropical cyclone track forecast error diagnosis Global/Regional Assimilation and prediction System initialuncertainty
下载PDF
Application of the Analogue-Based Correction of Errors Method in ENSO Prediction 被引量:9
12
作者 REN Hong-Li LIU Ying +2 位作者 JIN Fei-Fei YAN Yu-Ping LIU Xiang-Wen 《Atmospheric and Oceanic Science Letters》 CSCD 2014年第2期157-161,共5页
In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that th... In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that the flow-dependent model prediction errors are to some degree similar under analogous historical climate states, and so the historical errors can be used to effectively reduce such flow-dependent errors. With this method, the unknown errors in current ENSO predictions can be empirically estimated by using the known prediction errors which are diagnosed by the same model based on historical analogue states. The authors first propose the basic idea for applying the ACE method to ENSO prediction and then establish an analogue-dynamical ENSO prediction system based on an operational climate prediction model. The authors present some experimental results which clearly show the possibility of correcting the flow-dependent errors in ENSO prediction, and thus the potential of applying the ACE method to operational ENSO prediction based on climate models. 展开更多
关键词 ENSO climatic prediction error correction
下载PDF
A Forecast Error Correction Method in Numerical Weather Prediction by Using Recent Multiple-time Evolution Data 被引量:3
13
作者 薛海乐 沈学顺 丑纪范 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第5期1249-1259,共11页
The initial value error and the imperfect numerical model are usually considered as error sources of numerical weather prediction (NWP). By using past multi-time observations and model output, this study proposes a ... The initial value error and the imperfect numerical model are usually considered as error sources of numerical weather prediction (NWP). By using past multi-time observations and model output, this study proposes a method to estimate imperfect numerical model error. This method can be inversely estimated through expressing the model error as a Lagrange interpolation polynomial, while the coefficients of polyno- mial are determined by past model performance. However, for practical application in the full NWP model, it is necessary to determine the following criteria: (1) the length of past data sufficient for estimation of the model errors, (2) a proper method of estimating the term "model integration with the exact solution" when solving the inverse problem, and (3) the extent to which this scheme is sensitive to the observational errors. In this study, such issues are resolved using a simple linear model, and an advection diffusion model is applied to discuss the sensitivity of the method to an artificial error source. The results indicate that the forecast errors can be largely reduced using the proposed method if the proper length of past data is chosen. To address the three problems, it is determined that (1) a few data limited by the order of the corrector can be used, (2) trapezoidal approximation can be employed to estimate the "term" in this study; however, a more accurate method should be explored for an operational NWP model, and (3) the correction is sensitive to observational error. 展开更多
关键词 numerical weather prediction past data model error inverse problem
下载PDF
Diagnosing SST Error Growth during ENSO Developing Phase in the BCC_CSM1.1(m) Prediction System 被引量:3
14
作者 Ben TIAN Hong-Li REN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第3期427-442,共16页
In this study, the predictability of the El Nino-South Oscillation(ENSO) in an operational prediction model from the perspective of initial errors is diagnosed using the seasonal hindcasts of the Beijing Climate Cente... In this study, the predictability of the El Nino-South Oscillation(ENSO) in an operational prediction model from the perspective of initial errors is diagnosed using the seasonal hindcasts of the Beijing Climate Center System Model,BCC;SM1.1(m). Forecast skills during the different ENSO phases are analyzed and it is shown that the ENSO forecasts appear to be more challenging during the developing phase, compared to the decay phase. During ENSO development, the SST prediction errors are significantly negative and cover a large area in the central and eastern tropical Pacific, thus limiting the model skill in predicting the intensity of El Nino. The large-scale SST errors, at their early stage, are generated gradually in terms of negative anomalies in the subsurface ocean temperature over the central-western equatorial Pacific,featuring an error evolutionary process similar to that of El Nino decay and the transition to the La Nina growth phase.Meanwhile, for short lead-time ENSO predictions, the initial wind errors begin to play an increasing role, particularly in linking with the subsurface heat content errors in the central-western Pacific. By comparing the multiple samples of initial fields in the model, it is clearly found that poor SST predictions of the Nino-3.4 region are largely due to contributions of the initial errors in certain specific locations in the tropical Pacific. This demonstrates that those sensitive areas for initial fields in ENSO prediction are fairly consistent in both previous ideal experiments and our operational predictions,indicating the need for targeted observations to further improve operational forecasts of ENSO. 展开更多
关键词 ENSO prediction initial errors error evolution SST
下载PDF
Impact of observational MJO forcing on ENSO predictability in the Zebiak-Cane model: PartⅠ.Effect on the maximum prediction error 被引量:4
15
作者 PENG Yuehua SONG Junqiang +1 位作者 XIANG Jie SUN Chengzhi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第5期39-45,共7页
With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational dat... With the observational wind data and the Zebiak-Cane model, the impact of Madden-Iulian Oscillation (MJO) as external forcing on El Nino-Southern Oscillation (ENSO) predictability is studied. The observational data are analyzed with Continuous Wavelet Transform (CWT) and then used to extract MJO signals, which are added into the model to get a new model. After the Conditional Nonlinear Optimal Perturbation (CNOP) method has been used, the initial errors which can evolve into maximum prediction error, model errors and their join errors are gained and then the Nifio 3 indices and spatial structures of three kinds of errors are investigated. The results mainly show that the observational MJO has little impact on the maximum prediction error of ENSO events and the initial error affects much greater than model error caused by MJO forcing. These demonstrate that the initial error might be the main error source that produces uncertainty in ENSO prediction, which could provide a theoretical foundation for the adaptive data assimilation of the ENSO forecast and contribute to the ENSO target observation. 展开更多
关键词 E1 Nifio-Southern Oscillation (ENSO) Madden-/ulian Oscillation (M/O) maximum prediction error Conditional Nonlinear Optimal Perturbation (CNOP)
下载PDF
What Kind of Initial Errors Cause the Severest Prediction Uncertainty of E1 Nino in Zebiak-Cane Model 被引量:1
16
作者 徐辉 段晚锁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期577-584,共8页
With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cau... With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOPtype errors, we find that for the normal states and the relatively weak E1 Nifio events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong E1 Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of E1 Nifio in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill. 展开更多
关键词 ENSO predictABILITY prediction error optimal perturbation
下载PDF
Prediction of diameter errors compensation in bars turning 被引量:1
17
作者 范胜波 王太勇 +1 位作者 汪文津 冷永刚 《Journal of Central South University》 SCIE EI CAS 2005年第S2期264-268,共5页
On the basis of analyzing the machine-workpiece-tool system, the main factors affecting diameter errors in bars turning are considered, and the mathematic models of the actual workpiece diameter at the cutting point a... On the basis of analyzing the machine-workpiece-tool system, the main factors affecting diameter errors in bars turning are considered, and the mathematic models of the actual workpiece diameter at the cutting point are established according to the three usual methods of mounting workpieces on a turning machine. Further a prediction system for diameter errors is developed; a new method, called discrete nodes output, is presented and applied to expressing workpiece diameter errors at given points along the part axis, then off-line compensation is implemented according to the prediction values to diminish machining errors. The results indicate that the method can diminish diameter errors more than 70%, greatly improve the machining accuracy of bars. 展开更多
关键词 DIAMETER error prediction OFF-LINE COMPENSATION TURNING
下载PDF
Errors Prediction for Vector-to-Raster Conversion Based on Map Load and Cell Size 被引量:2
18
作者 LIAO Shunbao BAI Zhongqiang BAI Yan 《Chinese Geographical Science》 SCIE CSCD 2012年第6期695-704,共10页
Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to dev... Vector-to-raster conversion is a process accompanied with errors.The errors are classified into predicted errors before rasterization and actual errors after that.Accurate prediction of the errors is beneficial to developing reasonable rasterization technical schemes and to making products of high quality.Analyzing and establishing a quantitative relationship between the error and its affecting factors is the key to error prediction.In this study,land cover data of China at a scale of 1:250 000 were taken as an example for analyzing the relationship between rasterization errors and the density of arc length(DA),the density of polygon(DP) and the size of grid cells(SG).Significant correlations were found between the errors and DA,DP and SG.The correlation coefficient(R2) of a model established based on samples collected in a small region(Beijing) reaches 0.95,and the value of R2 is equal to 0.91 while the model was validated with samples from the whole nation.On the other hand,the R2 of a model established based on nationwide samples reaches 0.96,and R2 is equal to 0.91 while it was validated with the samples in Beijing.These models depict well the relationships between rasterization errors and their affecting factors(DA,DP and SG).The analyzing method established in this study can be applied to effectively predicting rasterization errors in other cases as well. 展开更多
关键词 vector-to-raster conversion rasterization error prediction map load cell size
下载PDF
ENSO Predictions in an Intermediate Coupled Model Influenced by Removing Initial Condition Errors in Sensitive Areas: A Target Observation Perspective 被引量:4
19
作者 Ling-Jiang TAO Chuan GAO Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第7期853-867,共15页
Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas(socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction s... Previous studies indicate that ENSO predictions are particularly sensitive to the initial conditions in some key areas(socalled "sensitive areas"). And yet, few studies have quantified improvements in prediction skill in the context of an optimal observing system. In this study, the impact on prediction skill is explored using an intermediate coupled model in which errors in initial conditions formed to make ENSO predictions are removed in certain areas. Based on ideal observing system simulation experiments, the importance of various observational networks on improvement of El Ni n?o prediction skill is examined. The results indicate that the initial states in the central and eastern equatorial Pacific are important to improve El Ni n?o prediction skill effectively. When removing the initial condition errors in the central equatorial Pacific, ENSO prediction errors can be reduced by 25%. Furthermore, combinations of various subregions are considered to demonstrate the efficiency on ENSO prediction skill. Particularly, seasonally varying observational networks are suggested to improve the prediction skill more effectively. For example, in addition to observing in the central equatorial Pacific and its north throughout the year,increasing observations in the eastern equatorial Pacific during April to October is crucially important, which can improve the prediction accuracy by 62%. These results also demonstrate the effectiveness of the conditional nonlinear optimal perturbation approach on detecting sensitive areas for target observations. 展开更多
关键词 El Nio prediction initial condition errors target observations
下载PDF
Investigate Targeted Factors to Achieve Prediction Goal in Stroke Convalescence in Terms of Causal Relationships of Prediction Error 被引量:1
20
作者 Takashi Kimura 《Open Journal of Therapy and Rehabilitation》 2022年第4期244-256,共13页
Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke pa... Background and Purpose: To investigate target functional independence measure (FIM) items to achieve the prediction goal in terms of the causal relationships between prognostic prediction error and FIM among stroke patients in the convalescent phase using the structural equation modeling (SEM) analysis. Methods: A total of 2992 stroke patients registered in the Japanese Rehabilitation Database were analyzed retrospectively. The prediction error was calculated based on a prognostic prediction formula proposed in a previous study. An exploratory factor analysis (EFA) then the factor was determined using confirmatory factorial analysis (CFA). Finally, multivariate analyses were performed using SEM analysis. Results: The fitted indices of the hypothesized model estimated based on EFA were confirmed by CFA. The factors estimated by EFA were applied, and interpreted as follows: “Transferring (T-factor),” “Dressing (D-factor),” and “Cognitive function (C-factor).” The fit of the structural model based on the three factors and prediction errors was supported by the SEM analysis. The effects of the D- and C-factors yielded similar causal relationships on prediction error. Meanwhile, the effects between the prediction error and the T-factor were low. Observed FIM items were related to their domains in the structural model, except for the dressing of the upper body and memory (p < 0.01). Conclusions: Transfer, which was not heavily considered in the previous prediction formula, was found in causal relationships with prediction error. It is suggested to intervene to transfer together with positive factors to recovery for achieving the prediction goal. 展开更多
关键词 prediction error Functional Independence Measure STROKE Convalescent Phase Structural Equation Modeling
下载PDF
上一页 1 2 126 下一页 到第
使用帮助 返回顶部