The s recent works on the improvement of the Strain Range Partitioning(SRP) method and its application to the life prediction of high temperature structural components are summarized. Examined components are divided ...The s recent works on the improvement of the Strain Range Partitioning(SRP) method and its application to the life prediction of high temperature structural components are summarized. Examined components are divided into three groups, that is, components in the steel production plants, in the automobile and in the fossil power plants. Based on the results of the inelastic analysis and the creepfatigue properties of the material, which were obtained by IJ(=PP,PC, CP, CC) tests, the effects of the material properties, operating conditions and configuration of components were quantitatively evaluated to select the most effective measures for the thermal fatigue life extension. The SRP has been successfully applied until now to the life prediction and extension of the actual structural components subjected to thermal cycling by the s.展开更多
As the Welch-Berlekamp (W-B) theorem accurately predicts structure of error locator polynomials of the error patterns, it results in the Welch-Berlekamp algorithm of decoding cyclic codes. However, it is only valid wi...As the Welch-Berlekamp (W-B) theorem accurately predicts structure of error locator polynomials of the error patterns, it results in the Welch-Berlekamp algorithm of decoding cyclic codes. However, it is only valid within the BCH bound. Now, a prediction formula for error locator determination is presented based on the study of theory of minimal homogeneous interpolation problem, which extends the Welch-Berlekamp theorem and expands the Welch-Berlekamp algorithm so that the constraint from the BCH展开更多
文摘The s recent works on the improvement of the Strain Range Partitioning(SRP) method and its application to the life prediction of high temperature structural components are summarized. Examined components are divided into three groups, that is, components in the steel production plants, in the automobile and in the fossil power plants. Based on the results of the inelastic analysis and the creepfatigue properties of the material, which were obtained by IJ(=PP,PC, CP, CC) tests, the effects of the material properties, operating conditions and configuration of components were quantitatively evaluated to select the most effective measures for the thermal fatigue life extension. The SRP has been successfully applied until now to the life prediction and extension of the actual structural components subjected to thermal cycling by the s.
基金the National Natural Science Foundation of China and the Military Science Foundation in Ministry of Electronic Industry of China.
文摘As the Welch-Berlekamp (W-B) theorem accurately predicts structure of error locator polynomials of the error patterns, it results in the Welch-Berlekamp algorithm of decoding cyclic codes. However, it is only valid within the BCH bound. Now, a prediction formula for error locator determination is presented based on the study of theory of minimal homogeneous interpolation problem, which extends the Welch-Berlekamp theorem and expands the Welch-Berlekamp algorithm so that the constraint from the BCH