Urban traffic volume detection is an essential part of trafficplanning in terms of urban planning in China. To improve the statisticsefficiency of road traffic volume, this thesis proposes a method for predictingmotor...Urban traffic volume detection is an essential part of trafficplanning in terms of urban planning in China. To improve the statisticsefficiency of road traffic volume, this thesis proposes a method for predictingmotor vehicle traffic volume on urban roads in small and medium-sizedcities during the traffic peak hour by using mobile signal technology. Themethod is verified through simulation experiments, and the limitations andthe improvement methods are discussed. This research can be divided intothree parts: Firstly, the traffic patterns of small and medium-sized cities areobtained through a questionnaire survey. A total of 19745 residents weresurveyed in Luohe, a medium-sized city in China and five travel modes oflocal people were obtained. Secondly, after the characteristics of residents’rest and working time are investigated, a method is proposed in this studyfor the distribution of urban residential and working places based on mobilephone signaling technology. Finally, methods for predicting traffic volume ofthese travel modes are proposed after the characteristics of these travel modesand methods for the distribution of urban residential and working placesare analyzed. Based on the actual traffic volume data observed at offlineintersections, the project team takes Luohe city as the research object and itverifies the accuracy of the prediction method by comparing the predictiondata. The prediction simulation results of traffic volume show that the averageerror rate of traffic volume is unstable. The error rate ranges from 10% to 30%.In this thesis, simulation experiments and field investigations are adopted toanalyze why these errors occur.展开更多
文摘Urban traffic volume detection is an essential part of trafficplanning in terms of urban planning in China. To improve the statisticsefficiency of road traffic volume, this thesis proposes a method for predictingmotor vehicle traffic volume on urban roads in small and medium-sizedcities during the traffic peak hour by using mobile signal technology. Themethod is verified through simulation experiments, and the limitations andthe improvement methods are discussed. This research can be divided intothree parts: Firstly, the traffic patterns of small and medium-sized cities areobtained through a questionnaire survey. A total of 19745 residents weresurveyed in Luohe, a medium-sized city in China and five travel modes oflocal people were obtained. Secondly, after the characteristics of residents’rest and working time are investigated, a method is proposed in this studyfor the distribution of urban residential and working places based on mobilephone signaling technology. Finally, methods for predicting traffic volume ofthese travel modes are proposed after the characteristics of these travel modesand methods for the distribution of urban residential and working placesare analyzed. Based on the actual traffic volume data observed at offlineintersections, the project team takes Luohe city as the research object and itverifies the accuracy of the prediction method by comparing the predictiondata. The prediction simulation results of traffic volume show that the averageerror rate of traffic volume is unstable. The error rate ranges from 10% to 30%.In this thesis, simulation experiments and field investigations are adopted toanalyze why these errors occur.