To effectively reduce the damage to people and devices in civil defense engineering subjected to blast shock, a blast shock isolation system with magnetorheological fluid dampers (MRFD) is proposed. MRFD can provide c...To effectively reduce the damage to people and devices in civil defense engineering subjected to blast shock, a blast shock isolation system with magnetorheological fluid dampers (MRFD) is proposed. MRFD can provide continuously adjustable Coulomb friction and has many advantages for semi-active control. Numerical simulation of this isolation system is finished using Matlab simulink toolbox. General semi-active control algorithms are consided based on instantaneous optimal active control algorithm. And the results indicate that the shock isolation system can work efficiently, decreasing about 93% of the peak acceleration of the isolation floor.展开更多
Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc...Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.展开更多
Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and se...Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and semi-active control systems, have been investigated to overcome this problem. This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels. The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm. The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure. The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records. Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.展开更多
Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Pred...Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Predictive Control algorithm (NMPC) for semi-active landing gears is developed in this paper. The NMPC algorithm uses Genetic Algorithm (GA) as the optimization technique and chooses damping performance of landing gear at touch down to be the optimization object. The valve's rate and magnitude limitations are also considered in the controller's design. A simulation model is built for the semi-active landing gear's damping process at touchdown. Drop tests are carried out on an experimental passive landing gear systerm to validate the parameters of the simulation model. The result of numerical simulation shows that the isolation of impact load at touchdown can be significantly improved compared to other control algorithms. The strongly nonlinear dynamics of semi-active landing gear coupled with control valve's rate and magnitude limitations are handled well with the proposed controller.展开更多
The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a predicti...The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.展开更多
A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A mult...A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A multi-step predictive model is developed to estimate the seismic performance of high-rise buildings, taking into account of the effects of nonlinearity, time-variability, model mismatching, and disturbances and uncertainty of controlled system parameters by the predicted error feedback in the multi-step predictive model. Based on the predictive model, a Kalman-Bucy observer suitable for semi-active strategy is proposed to estimate the state vector from the acceleration and semi-active control force feedback. The main advantage of the proposed strategy is its inherent stability, simplicity, on-line real-time operation, and the ability to handle nonlinearity, uncertainty, and time-variability properties of structures. Numerical simulation of the nonlinear seismic responses of a controlled 20-story benchmark building is carried out, and the simulation results are compared to those of other control systems. The results show that the developed semi-active strategy can efficiently reduce the nonlinear seismic response of high-rise buildings.展开更多
In a conventional base isolation system,minimizing the seismic responses of the superstructure is always at the cost of increasing the isolator's response.The semi-active control of the isolator has been considere...In a conventional base isolation system,minimizing the seismic responses of the superstructure is always at the cost of increasing the isolator's response.The semi-active control of the isolator has been considered an effective solution to such a dilemma.It tunes the real-time properties of the isolator according to preset rules to further reduce the superstructure's seismic responses without increasing that of the isolator or vice versa.However,the number of ground motion records used to design and validate the controller,i.e.,the preset rules,in existing studies is usually very small and therefore is suspectable if it is adequate to address the significant uncertainty in the shaking of future earthquakes.This paper critically reviews the performance of the proportional-integralderivative(PID),linear-quadratic regulator(LQR),and fuzzy controllers in semi-active base isolation systems with magnetorheological(MR)dampers subjected to highly uncertain ground motion inputs through numerical simulations.The results show that the control performance of the controllers varies significantly with the increasing number of input records,suggesting the necessity of using at least 50 ground motion records to appropriately assess the performance uncertainty of semi-active base isolation systems.More importantly,the superior performance of the optimized controllers is not guaranteed if the system is subjected to ground motions that are new to the controller,even if the controller has been optimized for thousands of existing ground motions.It highlights the need of improving the adaptability of the semi-active systems for uncertain ground motion inputs.展开更多
This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stabilit...This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.展开更多
Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.How...Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.展开更多
Long-period pulses in near-field earthquakes lead to large displacements in the base of isolated structures.To dissipate energy in isolated structures using semi-active control,piezoelectric friction dampers(PFD) ca...Long-period pulses in near-field earthquakes lead to large displacements in the base of isolated structures.To dissipate energy in isolated structures using semi-active control,piezoelectric friction dampers(PFD) can be employed.The performance of a PFD is highly dependent on the strategy applied to adjust its contact force.In this paper,the seismic control of a benchmark isolated building equipped with PFD using PD/PID controllers is developed.Using genetic algorithms,these controllers are optimized to create a balance between the performance and robustness of the closed-loop structural system.One advantage of this technique is that the controller forces can easily be estimated.In addition,the structure is equipped with only a single sensor at the base floor to measure the base displacement.Considering seven pairs of earthquakes and nine performance indices,the performance of the closed-loop system is evaluated.Then,the results are compared with those given by two well-known methods:the maximum possive operation of piezoelectric friction dampers and LQG controllers.The simulation results show that the proposed controllers perform better than the others in terms of simultaneous reduction of floor acceleration and maximum displacement of the isolator.Moreover,they are able to reduce the displacement of the isolator systems for different earthquakes without losing the advantages of isolation.展开更多
A floor isolation system installed in a single floor or room in a fixed base structure is designed to protect equipment.With this configuration,the input motions to the floor isolation from the ground motions are filt...A floor isolation system installed in a single floor or room in a fixed base structure is designed to protect equipment.With this configuration,the input motions to the floor isolation from the ground motions are filtered by the structure,leaving the majority of the frequency content of the input motion lower than the predominant frequency of the structure.The floor isolation system should minimize the acceleration to protect equipment;however,displacement must also be limited to save floor space,especially with long period motion.Semi-active control with an H_(∞)control was adopted for the floor isolation system and a new input shaping filter was developed to account for the input motion characteristics and enhance the effectiveness of the H_(∞)control.A series of shake table tests for a semi-active floor isolation system using rolling pendulum isolators and a magnetic-rheological damper were performed to validate the H_(∞)control.Passive control using an oil damper was also tested for comparison.The test results show that the H_(∞)control effectively reduced acceleration for short period motions with frequencies close to the predominant frequency of the structure,as well as effectively reduced displacement for long period motions with frequencies close to the natural frequency of the floor isolation system.The H_(∞)control algorithm proved to be more advantageous than passive control because of its capacity to adjust control strategies according to the different motion frequency characteristics.展开更多
In the semiconductor manufacturing industry,the dynamic model of a controlled object is usually obtained from a frequency sweeping method before motion control.However,the existing isolators cannot properly isolate th...In the semiconductor manufacturing industry,the dynamic model of a controlled object is usually obtained from a frequency sweeping method before motion control.However,the existing isolators cannot properly isolate the disturbance of the inertial force on the platform base during frequency sweeping(the frequency is between 0 Hz and the natural frequency).In this paper,an adjustable anti-resonance frequency controller for a dual-stage actuation semi-active vibration isolation system(DSASAVIS)is proposed.This system has a significant anti-resonance characteristic;that is,the vibration amplitude can drop to nearly zero at a particular frequency,which is called the anti-resonance frequency.The proposed controller is designed to add an adjustable anti-resonance frequency to fully use this unique anti-resonance characteristic.Experimental results show that the closed-loop transmissibility is less than−15 dB from 0 Hz to the initial anti-resonance frequency.Furthermore,it is less than−30 dB around an added anti-resonance frequency which can be adjusted from 0 Hz to the initial anti-resonance frequency by changing the parameters of the proposed controller.With the proposed controller,the disturbance amplitude of the payload decays from 4 to 0.5 mm/s with a reduction of 87.5%for the impulse disturbance applied to the platform base.Simultaneously,the system can adjust the anti-resonance frequency point in real time by tracking the frequency sweeping disturbances,and a good vibration isolation performance is achieved.This indicates that the DSA-SAVIS and the proposed controller can be applied in the guarantee of an ultra-low vibration environment,especially at frequency sweeping in the semiconductor manufacturing industry.展开更多
The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control st...The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control strategy faces the challenge to strike a balance among these indexes.This research analyzes the fundamental mechanism of control phase deviation effects on skyhook damper control,groundhook damper control,and acceleration drive damper control.From the perspective of complex domain mechanical impedance with the support of the inertial suspension,a structure-based compensation approach is proposed to address for the control phase deviation.The simulation analysis demonstrates that the coordination of inertial suspension structure and control strategy can effectively enhance the comprehensive suspension performance across entire frequency range.Finally,a semi-active inertial suspension bench is implemented.The experimental results indicate that the suspension with the semi-active inertial suspension has outstanding vibration isolation ability,and enhances the suspension performance at ride comfort,suspension deflection,and road friendly significantly.展开更多
The recent developments of theoretical research, model tests and engineering applications of structural control in China's Mainland are reviewed in this paper. It includes seismic isolation, passive energy dissipa...The recent developments of theoretical research, model tests and engineering applications of structural control in China's Mainland are reviewed in this paper. It includes seismic isolation, passive energy dissipation, active and semi-active control, smart materials and smart structural systems. It can be seen that passive control methods, such as seismic isolation and energy dissipation methods, have developed into the mature stage in China. At the same time, great progress has been made in active and semi-active control, and smart actuators or smart dampers and smart structural systems. Finally, some future research initiatives for structural control in civil engineering are suggested. Keywords state-of-the-art review - structural control - seismic isolation - passive energy dissipation - active and semi-active control - smart material and smart structure Supported by : National Natural Science Foundation of China (Grant No. 50025821)展开更多
基金Supported by the National Civil Defense Office of China for the Tenth Five-Year Plan and Tsinghua Basic Research Foundation (No.JC2003001)
文摘To effectively reduce the damage to people and devices in civil defense engineering subjected to blast shock, a blast shock isolation system with magnetorheological fluid dampers (MRFD) is proposed. MRFD can provide continuously adjustable Coulomb friction and has many advantages for semi-active control. Numerical simulation of this isolation system is finished using Matlab simulink toolbox. General semi-active control algorithms are consided based on instantaneous optimal active control algorithm. And the results indicate that the shock isolation system can work efficiently, decreasing about 93% of the peak acceleration of the isolation floor.
文摘Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively.
文摘Base isolated structures have been found to be at risk in near-fault regions as a result of long period pulses that may exist in near-source ground motions. Various control strategies, including passive, active and semi-active control systems, have been investigated to overcome this problem. This study focuses on the development of a semi-active control algorithm based on several performance levels anticipated from an isolated building during different levels of ground shaking corresponding to various earthquake hazard levels. The proposed performance-based algorithm is based on a modified version of the well-known semi-active skyhook control algorithm. The proposed control algorithm changes the control gain depending on the level of shaking imposed on the structure. The proposed control system has been evaluated using a series of analyses performed on a base isolated benchmark building subjected to seven pairs of scaled ground motion records. Simulation results show that the newly proposed algorithm is effective in improving the structural and nonstructural performance of the building for selected earthquakes.
基金Aeronautical Science Foundation of China (98B52023), (04B52012)
文摘Semi-active landing gear can provide good performance of both landing impact and taxi situation, and has the ability for adapting to various ground conditions and operational conditions. A kind of Nonlinear Model Predictive Control algorithm (NMPC) for semi-active landing gears is developed in this paper. The NMPC algorithm uses Genetic Algorithm (GA) as the optimization technique and chooses damping performance of landing gear at touch down to be the optimization object. The valve's rate and magnitude limitations are also considered in the controller's design. A simulation model is built for the semi-active landing gear's damping process at touchdown. Drop tests are carried out on an experimental passive landing gear systerm to validate the parameters of the simulation model. The result of numerical simulation shows that the isolation of impact load at touchdown can be significantly improved compared to other control algorithms. The strongly nonlinear dynamics of semi-active landing gear coupled with control valve's rate and magnitude limitations are handled well with the proposed controller.
基金Projects(90815025,51178034) supported by the National Natural Science Foundation of China
文摘The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.
基金Fujian Province Youth Foundation for InnovativResearch Under Grant No. 2006F3008Fujian ProvincEducational Special Foundation Under Grant No. JA06027
文摘A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A multi-step predictive model is developed to estimate the seismic performance of high-rise buildings, taking into account of the effects of nonlinearity, time-variability, model mismatching, and disturbances and uncertainty of controlled system parameters by the predicted error feedback in the multi-step predictive model. Based on the predictive model, a Kalman-Bucy observer suitable for semi-active strategy is proposed to estimate the state vector from the acceleration and semi-active control force feedback. The main advantage of the proposed strategy is its inherent stability, simplicity, on-line real-time operation, and the ability to handle nonlinearity, uncertainty, and time-variability properties of structures. Numerical simulation of the nonlinear seismic responses of a controlled 20-story benchmark building is carried out, and the simulation results are compared to those of other control systems. The results show that the developed semi-active strategy can efficiently reduce the nonlinear seismic response of high-rise buildings.
基金the Natural Science Foundation of China(grant number 52122811)the National Key Research and Development Program of China(grant number 2019YFE0112700).
文摘In a conventional base isolation system,minimizing the seismic responses of the superstructure is always at the cost of increasing the isolator's response.The semi-active control of the isolator has been considered an effective solution to such a dilemma.It tunes the real-time properties of the isolator according to preset rules to further reduce the superstructure's seismic responses without increasing that of the isolator or vice versa.However,the number of ground motion records used to design and validate the controller,i.e.,the preset rules,in existing studies is usually very small and therefore is suspectable if it is adequate to address the significant uncertainty in the shaking of future earthquakes.This paper critically reviews the performance of the proportional-integralderivative(PID),linear-quadratic regulator(LQR),and fuzzy controllers in semi-active base isolation systems with magnetorheological(MR)dampers subjected to highly uncertain ground motion inputs through numerical simulations.The results show that the control performance of the controllers varies significantly with the increasing number of input records,suggesting the necessity of using at least 50 ground motion records to appropriately assess the performance uncertainty of semi-active base isolation systems.More importantly,the superior performance of the optimized controllers is not guaranteed if the system is subjected to ground motions that are new to the controller,even if the controller has been optimized for thousands of existing ground motions.It highlights the need of improving the adaptability of the semi-active systems for uncertain ground motion inputs.
基金National Natural Science Foundation(NNSF)of China under Grant No.51478132Guangzhou City College Scientific Research Project under Grant No.120163017
文摘This study investigates the effectiveness of the non-smooth semi-active control algorithm on suppressing the vibration performance of a building structure subjected to seismic waves. According to the Lyapunov stability theory, it has bene proven that the non-smooth semi-active control algorithm can achieve a finite-time stability of the vibration relative to the isolation layer of a building structure. Through numerical simulation of two buildings with different parameters subjected to the input of a seismic wave, the vibration conditions of passive control, LQR semi-active control and non-smooth semiactive control are compared and analyzed. The simulation results show that the non-smooth semi-active control algorithm has a better robustness and effectiveness in restraining the impact of earthquakes on the structure.
基金Supported by National Natural Science Foundation of China(Grant No.61773060).
文摘Serving the Stewart mechanism as a wheel-legged structure,the most outstanding superiority of the proposed wheel-legged hybrid robot(WLHR)is the active vibration isolation function during rolling on rugged terrain.However,it is difficult to obtain its precise dynamic model,because of the nonlinearity and uncertainty of the heavy robot.This paper presents a dynamic control framework with a decentralized structure for single wheel-leg,position tracking based on model predictive control(MPC)and adaptive impedance module from inside to outside.Through the Newton-Euler dynamic model of the Stewart mechanism,the controller first creates a predictive model by combining Newton-Raphson iteration of forward kinematic and inverse kinematic calculation of Stewart.The actuating force naturally enables each strut to stretch and retract,thereby realizing six degrees-of-freedom(6-DOFs)position-tracking for Stewart wheel-leg.The adaptive impedance control in the outermost loop adjusts environmental impedance parameters by current position and force feedback of wheel-leg along Z-axis.This adjustment allows the robot to adequately control the desired support force tracking,isolating the robot body from vibration that is generated from unknown terrain.The availability of the proposed control methodology on a physical prototype is demonstrated by tracking a Bezier curve and active vibration isolation while the robot is rolling on decelerate strips.By comparing the proportional and integral(PI)and constant impedance controllers,better performance of the proposed algorithm was operated and evaluated through displacement and force sensors internally-installed in each cylinder,as well as an inertial measurement unit(IMU)mounted on the robot body.The proposed algorithm structure significantly enhances the control accuracy and vibration isolation capacity of parallel wheel-legged robot.
文摘Long-period pulses in near-field earthquakes lead to large displacements in the base of isolated structures.To dissipate energy in isolated structures using semi-active control,piezoelectric friction dampers(PFD) can be employed.The performance of a PFD is highly dependent on the strategy applied to adjust its contact force.In this paper,the seismic control of a benchmark isolated building equipped with PFD using PD/PID controllers is developed.Using genetic algorithms,these controllers are optimized to create a balance between the performance and robustness of the closed-loop structural system.One advantage of this technique is that the controller forces can easily be estimated.In addition,the structure is equipped with only a single sensor at the base floor to measure the base displacement.Considering seven pairs of earthquakes and nine performance indices,the performance of the closed-loop system is evaluated.Then,the results are compared with those given by two well-known methods:the maximum possive operation of piezoelectric friction dampers and LQG controllers.The simulation results show that the proposed controllers perform better than the others in terms of simultaneous reduction of floor acceleration and maximum displacement of the isolator.Moreover,they are able to reduce the displacement of the isolator systems for different earthquakes without losing the advantages of isolation.
文摘A floor isolation system installed in a single floor or room in a fixed base structure is designed to protect equipment.With this configuration,the input motions to the floor isolation from the ground motions are filtered by the structure,leaving the majority of the frequency content of the input motion lower than the predominant frequency of the structure.The floor isolation system should minimize the acceleration to protect equipment;however,displacement must also be limited to save floor space,especially with long period motion.Semi-active control with an H_(∞)control was adopted for the floor isolation system and a new input shaping filter was developed to account for the input motion characteristics and enhance the effectiveness of the H_(∞)control.A series of shake table tests for a semi-active floor isolation system using rolling pendulum isolators and a magnetic-rheological damper were performed to validate the H_(∞)control.Passive control using an oil damper was also tested for comparison.The test results show that the H_(∞)control effectively reduced acceleration for short period motions with frequencies close to the predominant frequency of the structure,as well as effectively reduced displacement for long period motions with frequencies close to the natural frequency of the floor isolation system.The H_(∞)control algorithm proved to be more advantageous than passive control because of its capacity to adjust control strategies according to the different motion frequency characteristics.
基金Project supported by the National Natural Science Foundation of China(No.51975160)。
文摘In the semiconductor manufacturing industry,the dynamic model of a controlled object is usually obtained from a frequency sweeping method before motion control.However,the existing isolators cannot properly isolate the disturbance of the inertial force on the platform base during frequency sweeping(the frequency is between 0 Hz and the natural frequency).In this paper,an adjustable anti-resonance frequency controller for a dual-stage actuation semi-active vibration isolation system(DSASAVIS)is proposed.This system has a significant anti-resonance characteristic;that is,the vibration amplitude can drop to nearly zero at a particular frequency,which is called the anti-resonance frequency.The proposed controller is designed to add an adjustable anti-resonance frequency to fully use this unique anti-resonance characteristic.Experimental results show that the closed-loop transmissibility is less than−15 dB from 0 Hz to the initial anti-resonance frequency.Furthermore,it is less than−30 dB around an added anti-resonance frequency which can be adjusted from 0 Hz to the initial anti-resonance frequency by changing the parameters of the proposed controller.With the proposed controller,the disturbance amplitude of the payload decays from 4 to 0.5 mm/s with a reduction of 87.5%for the impulse disturbance applied to the platform base.Simultaneously,the system can adjust the anti-resonance frequency point in real time by tracking the frequency sweeping disturbances,and a good vibration isolation performance is achieved.This indicates that the DSA-SAVIS and the proposed controller can be applied in the guarantee of an ultra-low vibration environment,especially at frequency sweeping in the semiconductor manufacturing industry.
基金supported by the National Natural Science Foundation of China(Grant No.52202471)the National Natural Science Foundation of China:Regional Innovation and Development Joint Fund(Grant No.U20A20331)+2 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB659)the National Natural Science Foundation of China(Grant No.52002156 and 52072157)the Postgraduate Education Reform Project of Jiangsu Province(Grant No.KYCX21_3333).
文摘The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control strategy faces the challenge to strike a balance among these indexes.This research analyzes the fundamental mechanism of control phase deviation effects on skyhook damper control,groundhook damper control,and acceleration drive damper control.From the perspective of complex domain mechanical impedance with the support of the inertial suspension,a structure-based compensation approach is proposed to address for the control phase deviation.The simulation analysis demonstrates that the coordination of inertial suspension structure and control strategy can effectively enhance the comprehensive suspension performance across entire frequency range.Finally,a semi-active inertial suspension bench is implemented.The experimental results indicate that the suspension with the semi-active inertial suspension has outstanding vibration isolation ability,and enhances the suspension performance at ride comfort,suspension deflection,and road friendly significantly.
基金National Natural Science Foundation of China Grant No.50025821
文摘The recent developments of theoretical research, model tests and engineering applications of structural control in China's Mainland are reviewed in this paper. It includes seismic isolation, passive energy dissipation, active and semi-active control, smart materials and smart structural systems. It can be seen that passive control methods, such as seismic isolation and energy dissipation methods, have developed into the mature stage in China. At the same time, great progress has been made in active and semi-active control, and smart actuators or smart dampers and smart structural systems. Finally, some future research initiatives for structural control in civil engineering are suggested. Keywords state-of-the-art review - structural control - seismic isolation - passive energy dissipation - active and semi-active control - smart material and smart structure Supported by : National Natural Science Foundation of China (Grant No. 50025821)