Digitisation,new technologies and artificial intelligence demand organisations for new ways of working with a different skill set to accomplish strategic objectives.HR analytics is the scientific solution enabling org...Digitisation,new technologies and artificial intelligence demand organisations for new ways of working with a different skill set to accomplish strategic objectives.HR analytics is the scientific solution enabling organisations to make significant human capital and strategic business decisions and thereby gain a competitive advantage.However,theory-based relationships in HR analytics adoption is meagre.Further,there is a paucity of HR analytics literature on the role of contextual factors that affect organisations in building predictive HR analytics(PHRA)capability.Addressing this gap,we develop a conceptual framework through the lens of the Technological-Organisational-Environmental(TOE)framework and Resource-based theory to examine the relationships among the antecedents and consequences of PHRA capability considering talent management under the moderating effect of a data-driven culture.This paper is possibly the first study to propose a theoretical model to examine the effect of PHRA capability on talent management outcomes.展开更多
To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)netwo...To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.展开更多
文摘Digitisation,new technologies and artificial intelligence demand organisations for new ways of working with a different skill set to accomplish strategic objectives.HR analytics is the scientific solution enabling organisations to make significant human capital and strategic business decisions and thereby gain a competitive advantage.However,theory-based relationships in HR analytics adoption is meagre.Further,there is a paucity of HR analytics literature on the role of contextual factors that affect organisations in building predictive HR analytics(PHRA)capability.Addressing this gap,we develop a conceptual framework through the lens of the Technological-Organisational-Environmental(TOE)framework and Resource-based theory to examine the relationships among the antecedents and consequences of PHRA capability considering talent management under the moderating effect of a data-driven culture.This paper is possibly the first study to propose a theoretical model to examine the effect of PHRA capability on talent management outcomes.
基金co-supported by the National Natural Science Foundation of China(No.52192633)the Natural Science Foundation of Shaanxi Province,China(No.2022JC-03)the Fundamental Research Funds for the Central Universities,China(No.XJSJ23164)。
文摘To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM)network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explicit postulation of the dynamics.The LM method combines the already-trained LSTM network model to optimize the unknown aerodynamic parameters.The proposed method is applied by using the real flight data,generated by ATTAS aircraft and a bio-inspired morphing Unmanned Aerial Vehicle(UAV).The investigation reveals that for the two different flight data,the designed stacked LSTM network structure can maintain the efficacy of the network prediction capability only by appropriately adjusting the dropout rates of its hidden layers without changing other network parameters(i.e.,the initial weights,initial biases,number of hidden cells,time-steps,learning rate,and number of training iterations).Besides,the proposed method’s effectiveness and potential are demonstrated by comparing the estimated results of the ATTAS aircraft or the bio-inspired morphing UAV with the corresponding reference values or wind-tunnel results.