BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn...BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
BACKGROUND Sarcopenia may be associated with hepatocellular carcinoma(HCC)following hepatectomy.But traditional single clinical variables are still insufficient to predict recurrence.We still lack effective prediction...BACKGROUND Sarcopenia may be associated with hepatocellular carcinoma(HCC)following hepatectomy.But traditional single clinical variables are still insufficient to predict recurrence.We still lack effective prediction models for recent recurrence(time to recurrence<2 years)after hepatectomy for HCC.AIM To establish an interventable prediction model to estimate recurrence-free survival(RFS)after hepatectomy for HCC based on sarcopenia.METHODS We retrospectively analyzed 283 hepatitis B-related HCC patients who underwent curative hepatectomy for the first time,and the skeletal muscle index at the third lumbar spine was measured by preoperative computed tomography.94 of these patients were enrolled for external validation.Cox multivariate analysis was per-formed to identify the risk factors of postoperative recurrence in training cohort.A nomogram model was developed to predict the RFS of HCC patients,and its predictive performance was validated.The predictive efficacy of this model was evaluated using the receiver operating characteristic curve.RESULTS Multivariate analysis showed that sarcopenia[Hazard ratio(HR)=1.767,95%CI:1.166-2.678,P<0.05],alpha-fetoprotein≥40 ng/mL(HR=1.984,95%CI:1.307-3.011,P<0.05),the maximum diameter of tumor>5 cm(HR=2.222,95%CI:1.285-3.842,P<0.05),and hepatitis B virus DNA level≥2000 IU/mL(HR=2.1,95%CI:1.407-3.135,P<0.05)were independent risk factors associated with postoperative recurrence of HCC.Based on the sarcopenia to assess the RFS model of hepatectomy with hepatitis B-related liver cancer disease(SAMD)was established combined with other the above risk factors.The area under the curve of the SAMD model was 0.782(95%CI:0.705-0.858)in the training cohort(sensitivity 81%,specificity 63%)and 0.773(95%CI:0.707-0.838)in the validation cohort.Besides,a SAMD score≥110 was better to distinguish the high-risk group of postoperative recurrence of HCC.CONCLUSION Sarcopenia is associated with recent recurrence after hepatectomy for hepatitis B-related HCC.A nutritional status-based prediction model is first established for postoperative recurrence of hepatitis B-related HCC,which is superior to other models and contributes to prognosis prediction.展开更多
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis...Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.展开更多
Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenom...Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability.展开更多
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se...Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results.展开更多
In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guar...In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
BACKGROUND The birth of large-for-gestational-age(LGA)infants is associated with many shortterm adverse pregnancy outcomes.It has been observed that the proportion of LGA infants born to pregnant women with gestationa...BACKGROUND The birth of large-for-gestational-age(LGA)infants is associated with many shortterm adverse pregnancy outcomes.It has been observed that the proportion of LGA infants born to pregnant women with gestational diabetes mellitus(GDM)is significantly higher than that born to healthy pregnant women.However,traditional methods for the diagnosis of LGA have limitations.Therefore,this study aims to establish a predictive model that can effectively identify women with GDM who are at risk of delivering LGA infants.AIM To develop and validate a nomogram prediction model of delivering LGA infants among pregnant women with GDM,and provide strategies for the effective prevention and timely intervention of LGA.METHODS The multivariable prediction model was developed by carrying out the following steps.First,the variables that were associated with LGA risk in pregnant women with GDM were screened by univariate analyses,for which the P value was<0.10.Subsequently,Least Absolute Shrinkage and Selection Operator regression was fit using ten cross-validations,and the optimal combination factors were se-lected by choosing lambda 1se as the criterion.The final predictors were deter-mined by multiple backward stepwise logistic regression analysis,in which only the independent variables were associated with LGA risk,with a P value<0.05.Finally,a risk prediction model was established and subsequently evaluated by using area under the receiver operating characteristic curve,calibration curve and decision curve analyses.RESULTS After using a multistep screening method,we establish a predictive model.Several risk factors for delivering an LGA infant were identified(P<0.01),including weight gain during pregnancy,parity,triglyceride-glucose index,free tetraiodothyronine level,abdominal circumference,alanine transaminase-aspartate aminotransferase ratio and weight at 24 gestational weeks.The nomogram’s prediction ability was supported by the area under the curve(0.703,0.709,and 0.699 for the training cohort,validation cohort,and test cohort,respectively).The calibration curves of the three cohorts displayed good agreement.The decision curve showed that the use of the 10%-60%threshold for identifying pregnant women with GDM who are at risk of delivering an LGA infant would result in a positive net benefit.CONCLUSION Our nomogram incorporated easily accessible risk factors,facilitating individualized prediction of pregnant women with GDM who are likely to deliver an LGA infant.展开更多
BACKGROUND Being too light at birth can increase the risk of various diseases during infancy.AIM To explore the effect of perinatal factors on term low-birth-weight(LBW)infants and build a predictive model.This model ...BACKGROUND Being too light at birth can increase the risk of various diseases during infancy.AIM To explore the effect of perinatal factors on term low-birth-weight(LBW)infants and build a predictive model.This model aims to guide the clinical management of pregnant women’s healthcare during pregnancy and support the healthy growth of newborns.METHODS A retrospective analysis was conducted on data from 1794 single full-term pregnant women who gave birth.Newborns were grouped based on birth weight:Those with birth weight<2.5 kg were classified as the low-weight group,and those with birth weight between 2.5 kg and 4 kg were included in the normal group.Multiple logistic regression analysis was used to identify the factors influencing the occurrence of full-term LBW.A risk prediction model was established based on the analysis results.The effectiveness of the model was analyzed using the Hosmer–Leme show test and receiver operating characteristic(ROC)curve to verify the accuracy of the predictions.RESULTS Among the 1794 pregnant women,there were 62 cases of neonatal weight<2.5 kg,resulting in an LBW incidence rate of 3.46%.The factors influencing full-term LBW included low maternal education level[odds ratio(OR)=1.416],fewer prenatal examinations(OR=2.907),insufficient weight gain during pregnancy(OR=3.695),irregular calcium supplementation during pregnancy(OR=1.756),and pregnancy hypertension syndrome(OR=2.192).The prediction model equation was obtained as follows:Logit(P)=0.348×maternal education level+1.067×number of prenatal examinations+1.307×insufficient weight gain during pregnancy+0.563×irregular calcium supplementation during pregnancy+0.785×pregnancy hypertension syndrome−29.164.The area under the ROC curve for this model was 0.853,with a sensitivity of 0.852 and a specificity of 0.821.The Hosmer–Leme show test yieldedχ^(2)=2.185,P=0.449,indicating a good fit.The overall accuracy of the clinical validation model was 81.67%.CONCLUSION The occurrence of full-term LBW is related to maternal education,the number of prenatal examinations,weight gain during pregnancy,calcium supplementation during pregnancy,and pregnancy-induced hypertension.The constructed predictive model can effectively predict the risk of full-term LBW.展开更多
BACKGROUND Post-stroke infection is the most common complication of stroke and poses a huge threat to patients.In addition to prolonging the hospitalization time and increasing the medical burden,post-stroke infection...BACKGROUND Post-stroke infection is the most common complication of stroke and poses a huge threat to patients.In addition to prolonging the hospitalization time and increasing the medical burden,post-stroke infection also significantly increases the risk of disease and death.Clarifying the risk factors for post-stroke infection in patients with acute ischemic stroke(AIS)is of great significance.It can guide clinical practice to perform corresponding prevention and control work early,minimizing the risk of stroke-related infections and ensuring favorable disease outcomes.AIM To explore the risk factors for post-stroke infection in patients with AIS and to construct a nomogram predictive model.METHODS The clinical data of 206 patients with AIS admitted to our hospital between April 2020 and April 2023 were retrospectively collected.Baseline data and post-stroke infection status of all study subjects were assessed,and the risk factors for poststroke infection in patients with AIS were analyzed.RESULTS Totally,48 patients with AIS developed stroke,with an infection rate of 23.3%.Age,diabetes,disturbance of consciousness,high National Institutes of Health Stroke Scale(NIHSS)score at admission,invasive operation,and chronic obstructive pulmonary disease(COPD)were risk factors for post-stroke infection in patients with AIS(P<0.05).A nomogram prediction model was constructed with a C-index of 0.891,reflecting the good potential clinical efficacy of the nomogram prediction model.The calibration curve also showed good consistency between the actual observations and nomogram predictions.The area under the receiver operating characteristic curve was 0.891(95%confidence interval:0.839–0.942),showing predictive value for post-stroke infection.When the optimal cutoff value was selected,the sensitivity and specificity were 87.5%and 79.7%,respectively.CONCLUSION Age,diabetes,disturbance of consciousness,NIHSS score at admission,invasive surgery,and COPD are risk factors for post-stroke infection following AIS.The nomogram prediction model established based on these factors exhibits high discrimination and accuracy.展开更多
This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed ra...This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems.展开更多
BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects t...BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value.展开更多
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and const...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model.METHODS In total,379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort,and 123 patients from Nanfang Hospital were included in the external validation cohort.Univariate and multivariate logistic regression analyses were performed to identify independent predictors.The prediction model was established based on the Akaike information criterion.Internal and external validation were conducted to assess the performance of the model.RESULTS Age and total bilirubin(TBil)were independent risk factors for the incidence of ACLF within 1 year after TIPS.We developed a prediction model comprising age,TBil,and serum sodium,which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort.CONCLUSION Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis.Our model showed satisfying predictive value.展开更多
BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong t...BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment.展开更多
Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a ...Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.展开更多
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw...The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.展开更多
Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve...Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.展开更多
Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fa...Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.展开更多
The exponential rise in the burden of chronic kidney disease(CKD)worldwide has put enormous pressure on the economy.Predictive modeling of CKD can ease this burden by predicting the future disease occurrence ahead of ...The exponential rise in the burden of chronic kidney disease(CKD)worldwide has put enormous pressure on the economy.Predictive modeling of CKD can ease this burden by predicting the future disease occurrence ahead of its onset.There are various regression methods for predictive modeling based on the distribution of the outcome variable.However,the accuracy of the predictive model depends on how well the model is developed by taking into account the goodness of fit,choice of covariates,handling of covariates measured on a continuous scale,handling of categorical covariates,and number of outcome events per predictor parameter or sample size.Optimal performance of a predictive model on an independent cohort is desired.However,there are several challenges in the predictive modeling of CKD.Disease-specific methodological challenges hinder the development of a predictive model that is cost-effective and universally applicable to predict CKD onset.In this review,we discuss the advantages and challenges of various regression models available for predictive modeling and highlight those best for future CKD prediction.展开更多
基金Supported by Discipline Advancement Program of Shanghai Fourth People’s Hospital,No.SY-XKZT-2020-2013.
文摘BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金Supported by Guizhou Provincial Science and Technology Projects,No.[2021]013 and No.[2021]053Doctor Foundation of Guizhou Provincial People's Hospital,No.GZSYBS[2021]07.
文摘BACKGROUND Sarcopenia may be associated with hepatocellular carcinoma(HCC)following hepatectomy.But traditional single clinical variables are still insufficient to predict recurrence.We still lack effective prediction models for recent recurrence(time to recurrence<2 years)after hepatectomy for HCC.AIM To establish an interventable prediction model to estimate recurrence-free survival(RFS)after hepatectomy for HCC based on sarcopenia.METHODS We retrospectively analyzed 283 hepatitis B-related HCC patients who underwent curative hepatectomy for the first time,and the skeletal muscle index at the third lumbar spine was measured by preoperative computed tomography.94 of these patients were enrolled for external validation.Cox multivariate analysis was per-formed to identify the risk factors of postoperative recurrence in training cohort.A nomogram model was developed to predict the RFS of HCC patients,and its predictive performance was validated.The predictive efficacy of this model was evaluated using the receiver operating characteristic curve.RESULTS Multivariate analysis showed that sarcopenia[Hazard ratio(HR)=1.767,95%CI:1.166-2.678,P<0.05],alpha-fetoprotein≥40 ng/mL(HR=1.984,95%CI:1.307-3.011,P<0.05),the maximum diameter of tumor>5 cm(HR=2.222,95%CI:1.285-3.842,P<0.05),and hepatitis B virus DNA level≥2000 IU/mL(HR=2.1,95%CI:1.407-3.135,P<0.05)were independent risk factors associated with postoperative recurrence of HCC.Based on the sarcopenia to assess the RFS model of hepatectomy with hepatitis B-related liver cancer disease(SAMD)was established combined with other the above risk factors.The area under the curve of the SAMD model was 0.782(95%CI:0.705-0.858)in the training cohort(sensitivity 81%,specificity 63%)and 0.773(95%CI:0.707-0.838)in the validation cohort.Besides,a SAMD score≥110 was better to distinguish the high-risk group of postoperative recurrence of HCC.CONCLUSION Sarcopenia is associated with recent recurrence after hepatectomy for hepatitis B-related HCC.A nutritional status-based prediction model is first established for postoperative recurrence of hepatitis B-related HCC,which is superior to other models and contributes to prognosis prediction.
基金supported by the key project of the National Nature Science Foundation of China(51736002).
文摘Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.
文摘Delirium,a complex neurocognitive syndrome,frequently emerges following surgery,presenting diverse manifestations and considerable obstacles,especially among the elderly.This editorial delves into the intricate phenomenon of postoperative delirium(POD),shedding light on a study that explores POD in elderly individuals undergoing abdominal malignancy surgery.The study examines pathophysiology and predictive determinants,offering valuable insights into this challenging clinical scenario.Employing the synthetic minority oversampling technique,a predictive model is developed,incorporating critical risk factors such as comorbidity index,anesthesia grade,and surgical duration.There is an urgent need for accurate risk factor identification to mitigate POD incidence.While specific to elderly patients with abdominal malignancies,the findings contribute significantly to understanding delirium pathophysiology and prediction.Further research is warranted to establish standardized predictive for enhanced generalizability.
基金supported in part by the National Natural Science Foundation of China under Grant 62172192,U20A20228,and 62171203in part by the Science and Technology Demonstration Project of Social Development of Jiangsu Province under Grant BE2019631。
文摘Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results.
基金supported by the National Natural Science Foundation of China (62073015,62173036,62122014)。
文摘In this paper, a model predictive control(MPC)framework is proposed for finite-time stabilization of linear and nonlinear discrete-time systems subject to state and control constraints. The proposed MPC framework guarantees the finite-time convergence property by assigning the control horizon equal to the dimension of the overall system, and only penalizing the terminal cost in the optimization, where the stage costs are not penalized explicitly. A terminal inequality constraint is added to guarantee the feasibility and stability of the closed-loop system.Initial feasibility can be improved via augmentation. The finite-time convergence of the proposed MPC is proved theoretically,and is supported by simulation examples.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金Supported by National Natural Science Foundation of China,No.81870546Nanjing Medical Science and Technique Development Foundation,No.YKK23151Science and Technology Development Foundation Item of Nanjing Medical University,No.NMUB20210117.
文摘BACKGROUND The birth of large-for-gestational-age(LGA)infants is associated with many shortterm adverse pregnancy outcomes.It has been observed that the proportion of LGA infants born to pregnant women with gestational diabetes mellitus(GDM)is significantly higher than that born to healthy pregnant women.However,traditional methods for the diagnosis of LGA have limitations.Therefore,this study aims to establish a predictive model that can effectively identify women with GDM who are at risk of delivering LGA infants.AIM To develop and validate a nomogram prediction model of delivering LGA infants among pregnant women with GDM,and provide strategies for the effective prevention and timely intervention of LGA.METHODS The multivariable prediction model was developed by carrying out the following steps.First,the variables that were associated with LGA risk in pregnant women with GDM were screened by univariate analyses,for which the P value was<0.10.Subsequently,Least Absolute Shrinkage and Selection Operator regression was fit using ten cross-validations,and the optimal combination factors were se-lected by choosing lambda 1se as the criterion.The final predictors were deter-mined by multiple backward stepwise logistic regression analysis,in which only the independent variables were associated with LGA risk,with a P value<0.05.Finally,a risk prediction model was established and subsequently evaluated by using area under the receiver operating characteristic curve,calibration curve and decision curve analyses.RESULTS After using a multistep screening method,we establish a predictive model.Several risk factors for delivering an LGA infant were identified(P<0.01),including weight gain during pregnancy,parity,triglyceride-glucose index,free tetraiodothyronine level,abdominal circumference,alanine transaminase-aspartate aminotransferase ratio and weight at 24 gestational weeks.The nomogram’s prediction ability was supported by the area under the curve(0.703,0.709,and 0.699 for the training cohort,validation cohort,and test cohort,respectively).The calibration curves of the three cohorts displayed good agreement.The decision curve showed that the use of the 10%-60%threshold for identifying pregnant women with GDM who are at risk of delivering an LGA infant would result in a positive net benefit.CONCLUSION Our nomogram incorporated easily accessible risk factors,facilitating individualized prediction of pregnant women with GDM who are likely to deliver an LGA infant.
文摘BACKGROUND Being too light at birth can increase the risk of various diseases during infancy.AIM To explore the effect of perinatal factors on term low-birth-weight(LBW)infants and build a predictive model.This model aims to guide the clinical management of pregnant women’s healthcare during pregnancy and support the healthy growth of newborns.METHODS A retrospective analysis was conducted on data from 1794 single full-term pregnant women who gave birth.Newborns were grouped based on birth weight:Those with birth weight<2.5 kg were classified as the low-weight group,and those with birth weight between 2.5 kg and 4 kg were included in the normal group.Multiple logistic regression analysis was used to identify the factors influencing the occurrence of full-term LBW.A risk prediction model was established based on the analysis results.The effectiveness of the model was analyzed using the Hosmer–Leme show test and receiver operating characteristic(ROC)curve to verify the accuracy of the predictions.RESULTS Among the 1794 pregnant women,there were 62 cases of neonatal weight<2.5 kg,resulting in an LBW incidence rate of 3.46%.The factors influencing full-term LBW included low maternal education level[odds ratio(OR)=1.416],fewer prenatal examinations(OR=2.907),insufficient weight gain during pregnancy(OR=3.695),irregular calcium supplementation during pregnancy(OR=1.756),and pregnancy hypertension syndrome(OR=2.192).The prediction model equation was obtained as follows:Logit(P)=0.348×maternal education level+1.067×number of prenatal examinations+1.307×insufficient weight gain during pregnancy+0.563×irregular calcium supplementation during pregnancy+0.785×pregnancy hypertension syndrome−29.164.The area under the ROC curve for this model was 0.853,with a sensitivity of 0.852 and a specificity of 0.821.The Hosmer–Leme show test yieldedχ^(2)=2.185,P=0.449,indicating a good fit.The overall accuracy of the clinical validation model was 81.67%.CONCLUSION The occurrence of full-term LBW is related to maternal education,the number of prenatal examinations,weight gain during pregnancy,calcium supplementation during pregnancy,and pregnancy-induced hypertension.The constructed predictive model can effectively predict the risk of full-term LBW.
基金Shandong Province Grassroots Health Technology Innovation Program Project,No.JCK22007.
文摘BACKGROUND Post-stroke infection is the most common complication of stroke and poses a huge threat to patients.In addition to prolonging the hospitalization time and increasing the medical burden,post-stroke infection also significantly increases the risk of disease and death.Clarifying the risk factors for post-stroke infection in patients with acute ischemic stroke(AIS)is of great significance.It can guide clinical practice to perform corresponding prevention and control work early,minimizing the risk of stroke-related infections and ensuring favorable disease outcomes.AIM To explore the risk factors for post-stroke infection in patients with AIS and to construct a nomogram predictive model.METHODS The clinical data of 206 patients with AIS admitted to our hospital between April 2020 and April 2023 were retrospectively collected.Baseline data and post-stroke infection status of all study subjects were assessed,and the risk factors for poststroke infection in patients with AIS were analyzed.RESULTS Totally,48 patients with AIS developed stroke,with an infection rate of 23.3%.Age,diabetes,disturbance of consciousness,high National Institutes of Health Stroke Scale(NIHSS)score at admission,invasive operation,and chronic obstructive pulmonary disease(COPD)were risk factors for post-stroke infection in patients with AIS(P<0.05).A nomogram prediction model was constructed with a C-index of 0.891,reflecting the good potential clinical efficacy of the nomogram prediction model.The calibration curve also showed good consistency between the actual observations and nomogram predictions.The area under the receiver operating characteristic curve was 0.891(95%confidence interval:0.839–0.942),showing predictive value for post-stroke infection.When the optimal cutoff value was selected,the sensitivity and specificity were 87.5%and 79.7%,respectively.CONCLUSION Age,diabetes,disturbance of consciousness,NIHSS score at admission,invasive surgery,and COPD are risk factors for post-stroke infection following AIS.The nomogram prediction model established based on these factors exhibits high discrimination and accuracy.
基金National Science and Technology Council,Taiwan,for financially supporting this research(Grant No.NSTC 113-2221-E-018-011)Ministry of Education’s Teaching Practice Research Program,Taiwan(PSK1120797 and PSK1134099).
文摘This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems.
文摘BACKGROUND Study on influencing factors of gastric retention before endoscopic retrograde cholangiopancreatography(ERCP)background:With the wide application of ERCP,the risk of preoperative gastric retention affects the smooth progress of the operation.The study found that female,biliary and pancreatic malignant tumor,digestive tract obstruction and other factors are closely related to gastric retention,so the establishment of predictive model is very important to reduce the risk of operation.METHODS A retrospective analysis was conducted on 190 patients admitted to our hospital for ERCP preparation between January 2020 and February 2024.Patient baseline clinical data were collected using an electronic medical record system.Patients were randomly matched in a 1:4 ratio with data from 190 patients during the same period to establish a validation group(n=38)and a modeling group(n=152).Patients in the modeling group were divided into the gastric retention group(n=52)and non-gastric retention group(n=100)based on whether gastric retention occurred preoperatively.General data of patients in the validation group and identify factors influencing preoperative gastric retention in ERCP patients.A predictive model for preoperative gastric retention in ERCP patients was constructed,and calibration curves were used for validation.The receiver operating characteristic(ROC)curve was analyzed to evaluate the predictive value of the model.RESULTS We found no statistically significant difference in general data between the validation group and modeling group(P>0.05).The comparison of age,body mass index,hypertension,and diabetes between the two groups showed no statistically significant difference(P>0.05).However,we noted statistically significant differences in gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction between the two groups(P<0.05).Mul-tivariate logistic regression analysis showed that gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction were independent factors influencing preoperative gastric retention in ERCP patients(P<0.05).The results of logistic regression analysis revealed that gender,primary disease,jaundice,opioid use,and gastroin-testinal obstruction were included in the predictive model for preoperative gastric retention in ERCP patients.The calibration curves in the training set and validation set showed a slope close to 1,indicating good consistency between the predicted risk and actual risk.The ROC analysis results showed that the area under the curve(AUC)of the predictive model for preoperative gastric retention in ERCP patients in the training set was 0.901 with a standard error of 0.023(95%CI:0.8264-0.9567),and the optimal cutoff value was 0.71,with a sensitivity of 87.5 and specificity of 84.2.In the validation set,the AUC of the predictive model was 0.842 with a standard error of 0.013(95%CI:0.8061-0.9216),and the optimal cutoff value was 0.56,with a sensitivity of 56.2 and specificity of 100.0.CONCLUSION Gender,primary disease,jaundice,opioid use,and gastrointestinal obstruction are factors influencing preoperative gastric retention in ERCP patients.A predictive model established based on these factors has high predictive value.
基金the Special Fund for Clinical Research of Nanjing Drum Tower Hospital,No.2021-LCYJ-PY-01.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model.METHODS In total,379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort,and 123 patients from Nanfang Hospital were included in the external validation cohort.Univariate and multivariate logistic regression analyses were performed to identify independent predictors.The prediction model was established based on the Akaike information criterion.Internal and external validation were conducted to assess the performance of the model.RESULTS Age and total bilirubin(TBil)were independent risk factors for the incidence of ACLF within 1 year after TIPS.We developed a prediction model comprising age,TBil,and serum sodium,which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort.CONCLUSION Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis.Our model showed satisfying predictive value.
文摘BACKGROUND Gastric cancer is one of the most common malignant tumors in the digestive system,ranking sixth in incidence and fourth in mortality worldwide.Since 42.5%of metastatic lymph nodes in gastric cancer belong to nodule type and peripheral type,the application of imaging diagnosis is restricted.AIM To establish models for predicting the risk of lymph node metastasis in gastric cancer patients using machine learning(ML)algorithms and to evaluate their pre-dictive performance in clinical practice.METHODS Data of a total of 369 patients who underwent radical gastrectomy at the Depart-ment of General Surgery of Affiliated Hospital of Xuzhou Medical University(Xuzhou,China)from March 2016 to November 2019 were collected and retro-spectively analyzed as the training group.In addition,data of 123 patients who underwent radical gastrectomy at the Department of General Surgery of Jining First People’s Hospital(Jining,China)were collected and analyzed as the verifi-cation group.Seven ML models,including decision tree,random forest,support vector machine(SVM),gradient boosting machine,naive Bayes,neural network,and logistic regression,were developed to evaluate the occurrence of lymph node metastasis in patients with gastric cancer.The ML models were established fo-llowing ten cross-validation iterations using the training dataset,and subsequently,each model was assessed using the test dataset.The models’performance was evaluated by comparing the area under the receiver operating characteristic curve of each model.RESULTS Among the seven ML models,except for SVM,the other ones exhibited higher accuracy and reliability,and the influences of various risk factors on the models are intuitive.CONCLUSION The ML models developed exhibit strong predictive capabilities for lymph node metastasis in gastric cancer,which can aid in personalized clinical diagnosis and treatment.
文摘Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals.Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system,a multi-time scale optimal scheduling strategy based on model predictive control(MPC)is proposed under the consideration of load optimization.First,load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature,and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation cost.Second,considering inter-day to intra-day source-load prediction error,an intraday rolling optimal scheduling strategy based on MPC is proposed that dynamically corrects the day-ahead dispatch results to stabilize system power fluctuations and promote photovoltaic consumption.Finally,taking an office building on a summer work day as an example,the effectiveness of the proposed scheduling strategy is verified.The results of the example show that the strategy reduces the total operating cost of the photovoltaic energy storage building system by 17.11%,improves the carbon emission reduction by 7.99%,and the photovoltaic consumption rate reaches 98.57%,improving the system’s low-carbon and economic performance.
基金the University of Teknologi PETRONAS(UTP),Malaysia,and Ahmadu Bello University,Nigeria,for their vital help and availability of laboratory facilities that allowed this work to be conducted successfully.
文摘The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.
基金supported by the Science and Technology Project of State Grid Shanxi Electric Power Research Institute:Research on Data-Driven New Power System Operation Simulation and Multi Agent Control Strategy(52053022000F).
文摘Due to the impact of source-load prediction power errors and uncertainties,the actual operation of the park will have a wide range of fluctuations compared with the expected state,resulting in its inability to achieve the expected economy.This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control(MPC).In the day-ahead stage,an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min.In order to cope with power fluctuations of photovoltaic,wind turbine and conventional load,MPC is used to track and roll correct the day-ahead operating simulation plan in the intra-day stage to meet the actual operating operation status of the park.Finally,the validity and economy of the operating simulation strategy are verified through the analysis of arithmetic examples.
基金supported by the National Natural Science Foundationof China(62273029).
文摘Magnetic levitation control technology plays a significant role in maglev trains.Designing a controller for the levitation system is challenging due to the strong nonlinearity,open-loop instability,and the need for fast response and security.In this paper,we propose a Disturbance-Observe-based Tube Model Predictive Levitation Control(DO-TMPLC)scheme combined with a feedback linearization strategy for the levitation system.The proposed strategy incorporates state constraints and control input constraints,i.e.,the air gap,the vertical velocity,and the current applied to the coil.A feedback linearization strategy is used to cancel the nonlinearity of the tracking error system.Then,a disturbance observer is implemented to actively compensate for disturbances while a TMPLC controller is employed to alleviate the remaining disturbances.Furthermore,we analyze the recursive feasibility and input-to-state stability of the closed-loop system.The simulation results indicate the efficacy of the proposed control strategy.
基金Supported by Coord/7(1)/CAREKD/2018/NCD-II,No.5/4/7-12/13/NCD-IISenior Research Fellowship by the Indian Council of Medical Research,New Delhi,No.3/1/2(6)/Nephro/2022-NCD-II.
文摘The exponential rise in the burden of chronic kidney disease(CKD)worldwide has put enormous pressure on the economy.Predictive modeling of CKD can ease this burden by predicting the future disease occurrence ahead of its onset.There are various regression methods for predictive modeling based on the distribution of the outcome variable.However,the accuracy of the predictive model depends on how well the model is developed by taking into account the goodness of fit,choice of covariates,handling of covariates measured on a continuous scale,handling of categorical covariates,and number of outcome events per predictor parameter or sample size.Optimal performance of a predictive model on an independent cohort is desired.However,there are several challenges in the predictive modeling of CKD.Disease-specific methodological challenges hinder the development of a predictive model that is cost-effective and universally applicable to predict CKD onset.In this review,we discuss the advantages and challenges of various regression models available for predictive modeling and highlight those best for future CKD prediction.