Convolutional neural networks(CNNs) have been widely studied and found to obtain favorable results in statistical downscaling to derive high-resolution climate variables from large-scale coarse general circulation mod...Convolutional neural networks(CNNs) have been widely studied and found to obtain favorable results in statistical downscaling to derive high-resolution climate variables from large-scale coarse general circulation models(GCMs).However, there is a lack of research exploring the predictor selection for CNN modeling. This paper presents an effective and efficient greedy elimination algorithm to address this problem. The algorithm has three main steps: predictor importance attribution, predictor removal, and CNN retraining, which are performed sequentially and iteratively. The importance of individual predictors is measured by a gradient-based importance metric computed by a CNN backpropagation technique, which was initially proposed for CNN interpretation. The algorithm is tested on the CNN-based statistical downscaling of monthly precipitation with 20 candidate predictors and compared with a correlation analysisbased approach. Linear models are implemented as benchmarks. The experiments illustrate that the predictor selection solution can reduce the number of input predictors by more than half, improve the accuracy of both linear and CNN models,and outperform the correlation analysis method. Although the RMSE(root-mean-square error) is reduced by only 0.8%,only 9 out of 20 predictors are used to build the CNN, and the FLOPs(Floating Point Operations) decrease by 20.4%. The results imply that the algorithm can find subset predictors that correlate more to the monthly precipitation of the target area and seasons in a nonlinear way. It is worth mentioning that the algorithm is compatible with other CNN models with stacked variables as input and has the potential for nonlinear correlation predictor selection.展开更多
Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwe...Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwest Pacific. Yet, few studies have published to promote accurate habitat identification of stomatopods, obstructing scientific management and conservation of these valuable organisms. This study provides an ensemble modeling framework for habitat suitability modeling of stomatopods, utilizing the O. oratoria stock in the Bohai Sea as an example. Two modeling techniques(i.e., generalized additive model(GAM) and geographical weighted regression(GWR)) were applied to select environmental predictors(especially the selection between two types of sediment metrics) that better characterize O. oratoria distribution and build separate habitat suitability models(HSM). The performance of the individual HSMs were compared on interpolation accuracy and transferability.Then, they were integrated to check whether the ensemble model outperforms either individual model, according to fishers’ knowledge and scientific survey data. As a result, grain-size metrics of sediment outperformed sediment content metrics in modeling O. oratoria habitat, possibly because grain-size metrics not only reflect the effect of substrates on burrow development, but also link to sediment heat capacity which influences individual thermoregulation. Moreover, the GWR-based HSM outperformed the GAM-based HSM in interpolation accuracy,while the latter one displayed better transferability. On balance, the ensemble HSM appeared to improve the predictive performance overall, as it could avoid dependence on a single model type and successfully identified fisher-recognized and survey-indicated suitable habitats in either sparsely sampled or well investigated areas.展开更多
基金supported by the following grants: National Basic R&D Program of China (2018YFA0606203)Strategic Priority Research Program of Chinese Academy of Sciences (XDA23090102 and XDA20060501)+2 种基金Guangdong Major Project of Basic and Applied Basic Research (2020B0301030004)Special Fund of China Meteorological Administration for Innovation and Development (CXFZ2021J026)Special Fund for Forecasters of China Meteorological Administration (CMAYBY2020094)。
文摘Convolutional neural networks(CNNs) have been widely studied and found to obtain favorable results in statistical downscaling to derive high-resolution climate variables from large-scale coarse general circulation models(GCMs).However, there is a lack of research exploring the predictor selection for CNN modeling. This paper presents an effective and efficient greedy elimination algorithm to address this problem. The algorithm has three main steps: predictor importance attribution, predictor removal, and CNN retraining, which are performed sequentially and iteratively. The importance of individual predictors is measured by a gradient-based importance metric computed by a CNN backpropagation technique, which was initially proposed for CNN interpretation. The algorithm is tested on the CNN-based statistical downscaling of monthly precipitation with 20 candidate predictors and compared with a correlation analysisbased approach. Linear models are implemented as benchmarks. The experiments illustrate that the predictor selection solution can reduce the number of input predictors by more than half, improve the accuracy of both linear and CNN models,and outperform the correlation analysis method. Although the RMSE(root-mean-square error) is reduced by only 0.8%,only 9 out of 20 predictors are used to build the CNN, and the FLOPs(Floating Point Operations) decrease by 20.4%. The results imply that the algorithm can find subset predictors that correlate more to the monthly precipitation of the target area and seasons in a nonlinear way. It is worth mentioning that the algorithm is compatible with other CNN models with stacked variables as input and has the potential for nonlinear correlation predictor selection.
基金The National Natural Science Foundation of China under contract No.31902375the David and Lucile Packard Foundation+1 种基金the Innovation Team of Fishery Resources and Ecology in the Yellow Sea and Bohai Sea under contract No.2020TD01the Special Funds for Taishan Scholars Project of Shandong Province。
文摘Stomatopods are better known as mantis shrimp with considerable ecological importance in wide coastal waters globally. Some stomatopod species are exploited commercially, including Oratosquilla oratoria in the Northwest Pacific. Yet, few studies have published to promote accurate habitat identification of stomatopods, obstructing scientific management and conservation of these valuable organisms. This study provides an ensemble modeling framework for habitat suitability modeling of stomatopods, utilizing the O. oratoria stock in the Bohai Sea as an example. Two modeling techniques(i.e., generalized additive model(GAM) and geographical weighted regression(GWR)) were applied to select environmental predictors(especially the selection between two types of sediment metrics) that better characterize O. oratoria distribution and build separate habitat suitability models(HSM). The performance of the individual HSMs were compared on interpolation accuracy and transferability.Then, they were integrated to check whether the ensemble model outperforms either individual model, according to fishers’ knowledge and scientific survey data. As a result, grain-size metrics of sediment outperformed sediment content metrics in modeling O. oratoria habitat, possibly because grain-size metrics not only reflect the effect of substrates on burrow development, but also link to sediment heat capacity which influences individual thermoregulation. Moreover, the GWR-based HSM outperformed the GAM-based HSM in interpolation accuracy,while the latter one displayed better transferability. On balance, the ensemble HSM appeared to improve the predictive performance overall, as it could avoid dependence on a single model type and successfully identified fisher-recognized and survey-indicated suitable habitats in either sparsely sampled or well investigated areas.