An investigation was carried out concerning the effect of preferential dissolution on the erosion-corrosion for a chromium steel in 1 mol/L NaOH. Preliminary tests using a potentiodynamic technique were performed in o...An investigation was carried out concerning the effect of preferential dissolution on the erosion-corrosion for a chromium steel in 1 mol/L NaOH. Preliminary tests using a potentiodynamic technique were performed in order to establish the presence of preferential dissolution in the alkali solution with and without the alumina particles at different rotation speeds. For purposes of quantifying the observed phenomena a potentiostatic mass loss method was also used. The results show that the active peaks occur at potential between +0.4 and +0.5 V on the polarization curves, which indicates that there is a preferential dissolution for chromium steel under erosion-corrosion conditions and the ferrite phase acts as a sacrificial anode in favor of (Fe,Cr) 7C 3 phase. Addition of particles can promote the preferential dissolution at different rotation speeds. The combined effects of erosion-corrosion results in total mass loss rates to be greater than the sum effects of each process taken alone, thus showing a strong synergism between erosion and corrosion due to preferential dissolution.展开更多
The grain growth process plays an important role in the texture formation in magnesium alloys.The microstructural and micro-textural evolution of a cold-rolled Mg-Zn-Gd alloy during annealing at 350℃for 60-190 min we...The grain growth process plays an important role in the texture formation in magnesium alloys.The microstructural and micro-textural evolution of a cold-rolled Mg-Zn-Gd alloy during annealing at 350℃for 60-190 min were tracked by quasi-in-situ electron backscatter diffraction method.The results show that grain growth takes place gradually with the annealing time increasing.Moreover,the TD-split texture maintains the texture type but alters in three aspects-the increased tilting angle,the decreased pole intensity and the widened distribution of high-intensity area.Grains with their c-axis tilting 45-70°from normal direction show preferential growth which is closely associated with the texture changes.The original grain size advantage is one of the important factors leading to the growth advantage,some grain boundaries,such as 50-60°[1^(-)21^(-)0],50-60°[2750],60-70°[1^(-)21^(-)0](18b),and 70-80°[1^(-)01^(-)0](10)are also considered to be related to this preferential growth.展开更多
The stability of the shapes of crystal growth face and dissolution face in a two-dimensional mathematical model of crystal growth from solution under microgravity is studied. It is proved that the stable shapes of cry...The stability of the shapes of crystal growth face and dissolution face in a two-dimensional mathematical model of crystal growth from solution under microgravity is studied. It is proved that the stable shapes of crystal growth face and dissolution face do exist, which are suitably shaped curves with their upper parts inclined backward properly.The stable shapes of crystal growth faces and dissolution faces are calculated for various values of parameters, Ra, Pr and Sc. It is shown that the stronger the convection relative to the diffusion in solution is, the more backward the upperparts of the stable crystal growth face and dissolution face are inclined. The orientation and the shape of dissolution face hardly affect the stable shape of crystal growth face and vice versa.展开更多
Suspended particulate substances were sampled in the eastem equatorial Pacific in water column from surface to near bottom in five stations in 2005, from which 868 barite crystals were recovered. The barite crystals w...Suspended particulate substances were sampled in the eastem equatorial Pacific in water column from surface to near bottom in five stations in 2005, from which 868 barite crystals were recovered. The barite crystals were examined under scanning electron microscopy. About 61% of the total barites crystals contained detectable Sr by energy dispersive X-ray spectrometry. Barite crystals could be classified into four groups based on their morphology: 1) bladed; 2) ovoid or rounded; 3) arrow-like; and 4) irregularly shaped. The arrow-like barite crystals in natural environment has never been reported before. In addition, about a half of the studied crystals showed features of dissolution as cavities or holes inside of the crystals or around their edges. We found that differential dissolution of barite crystals is consequence of heterogeneous Sr distribution in barite crystals. Our results would help in understanding the biogeochemical processes of marine barite formation and preservation in seawater and marine sediments.展开更多
It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ...It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.展开更多
Radiogenic uranium isotope disequilibrium(^(234)U/^(238)U) has been used to trace a variety of Earth surface processes,and is usually attributed to direct recoil of ^(234)Th and preferential dissolution of radioactive...Radiogenic uranium isotope disequilibrium(^(234)U/^(238)U) has been used to trace a variety of Earth surface processes,and is usually attributed to direct recoil of ^(234)Th and preferential dissolution of radioactively damaged lattices at the mineral surface.However,the relative contribution of these two mechanisms in the natural environment remains unresolved,making it hard to use the extent of disequilibrium to quantify processes such as weathering.This study tests the contribution of preferential dissolution using well-characterized weathered moraines and river sediments from the southeastern Tibetan Plateau.The observations show that weathering of recent moraines where the contribution from direct recoil is negligible and is not associated with depletion of ^(234)U at the mineral surface.It suggests a limited role for preferential dissolution in this setting.We attribute this lack of preferential dissolution to a near-to-equilibrium dissolution at the weathering interfaces,with little development of etch pits associated with radioactively damaged energetic sites.展开更多
A novel scale-flee network model based on clique (complete subgraph of random size) growth and preferential attachment was proposed. The simulations of this model were carried out. And the necessity of two evolving ...A novel scale-flee network model based on clique (complete subgraph of random size) growth and preferential attachment was proposed. The simulations of this model were carried out. And the necessity of two evolving mechanisms of the model was verified. According to the mean-field theory, the degree distribution of this model was analyzed and computed. The degree distribution function of vertices of the generating network P(d) is 2m^2m1^-3(d-m1 + 1)^-3, where m and m1 denote the number of the new adding edges and the vertex number of the cliques respectively, d is the degree of the vertex, while one of cliques P(k) is 2m^2Ek^-3, where k is the degree of the clique. The simulated and analytical results show that both the degree distributions of vertices and cliques follow the scale-flee power-law distribution. The scale-free property of this model disappears in the absence of any one of the evolving mechanisms. Moreover, the randomicity of this model increases with the increment of the vertex number of the cliques.展开更多
A new crystal growth theoretical model is established for the low-dimensional nanocrystals on an isotropic and quasifree sustained substrate. The driven mechanism of the model is based on the competitive growth among ...A new crystal growth theoretical model is established for the low-dimensional nanocrystals on an isotropic and quasifree sustained substrate. The driven mechanism of the model is based on the competitive growth among the preferential growth directions of the crystals possessing anisotropic crystal structures, such as the hexagonal close-packed and wurtzite structures. The calculation results are in good agreement with the experimental findings in the growth process of the lowdimensional Zn nanocrystals on silicone oil surfaces. Our model shows a growth mechanism of various low-dimensional crystals on/in the isotropic substrates.展开更多
A combined model to predict austenite grains growth of titanium micro-alloyed as-cast steel during reheating process was established.The model invoIves the behaviors of austenite grains growth in continuous heating pr...A combined model to predict austenite grains growth of titanium micro-alloyed as-cast steel during reheating process was established.The model invoIves the behaviors of austenite grains growth in continuous heating process and isothermal soaking process,and the variation of boundary pinning efficiency caused by the dissolution and coarsening kinetics of sec on d-phase particles was also con sidered into the model.Furthermore,the experimental verificatio ns were performed to examine the prediction power of the model.The results revealed that the mean austenite grains size increased with the increase in reheating temperature and soaking time,and the coarsening temperature of austenite grains growth was 1423 K under the current titanium content.In addition,the reliability of the predicted results in continuous heating process was validated by continuous heating experimenls.Moreover,an optimal regression expression of austenite grains growth in isothermal soaking process was obtained based on the experimental results.The compared results indicated that the combined model in conjunction with precipitates dissolution and coarsening kinetics had good reliability and accuracy to predict the austenite grains growth of titanium micro-alloyed casting steel during reheating process.展开更多
文摘An investigation was carried out concerning the effect of preferential dissolution on the erosion-corrosion for a chromium steel in 1 mol/L NaOH. Preliminary tests using a potentiodynamic technique were performed in order to establish the presence of preferential dissolution in the alkali solution with and without the alumina particles at different rotation speeds. For purposes of quantifying the observed phenomena a potentiostatic mass loss method was also used. The results show that the active peaks occur at potential between +0.4 and +0.5 V on the polarization curves, which indicates that there is a preferential dissolution for chromium steel under erosion-corrosion conditions and the ferrite phase acts as a sacrificial anode in favor of (Fe,Cr) 7C 3 phase. Addition of particles can promote the preferential dissolution at different rotation speeds. The combined effects of erosion-corrosion results in total mass loss rates to be greater than the sum effects of each process taken alone, thus showing a strong synergism between erosion and corrosion due to preferential dissolution.
基金financial supports from the National Natural Science Foundation of China(NSFC,No.51601193)State Key Program of National Natural Science of China(No.51531002)+1 种基金National Key Research and Development Program of China(No.2016YFB0301104)National Basic Research Program of China(973 Program,No.2013CB632202)。
文摘The grain growth process plays an important role in the texture formation in magnesium alloys.The microstructural and micro-textural evolution of a cold-rolled Mg-Zn-Gd alloy during annealing at 350℃for 60-190 min were tracked by quasi-in-situ electron backscatter diffraction method.The results show that grain growth takes place gradually with the annealing time increasing.Moreover,the TD-split texture maintains the texture type but alters in three aspects-the increased tilting angle,the decreased pole intensity and the widened distribution of high-intensity area.Grains with their c-axis tilting 45-70°from normal direction show preferential growth which is closely associated with the texture changes.The original grain size advantage is one of the important factors leading to the growth advantage,some grain boundaries,such as 50-60°[1^(-)21^(-)0],50-60°[2750],60-70°[1^(-)21^(-)0](18b),and 70-80°[1^(-)01^(-)0](10)are also considered to be related to this preferential growth.
文摘The stability of the shapes of crystal growth face and dissolution face in a two-dimensional mathematical model of crystal growth from solution under microgravity is studied. It is proved that the stable shapes of crystal growth face and dissolution face do exist, which are suitably shaped curves with their upper parts inclined backward properly.The stable shapes of crystal growth faces and dissolution faces are calculated for various values of parameters, Ra, Pr and Sc. It is shown that the stronger the convection relative to the diffusion in solution is, the more backward the upperparts of the stable crystal growth face and dissolution face are inclined. The orientation and the shape of dissolution face hardly affect the stable shape of crystal growth face and vice versa.
基金Supported by the China Ocean Mineral Resources R&D Association(Mas,DYXM-115-02-1-13,DYXM-115-01-3-04)
文摘Suspended particulate substances were sampled in the eastem equatorial Pacific in water column from surface to near bottom in five stations in 2005, from which 868 barite crystals were recovered. The barite crystals were examined under scanning electron microscopy. About 61% of the total barites crystals contained detectable Sr by energy dispersive X-ray spectrometry. Barite crystals could be classified into four groups based on their morphology: 1) bladed; 2) ovoid or rounded; 3) arrow-like; and 4) irregularly shaped. The arrow-like barite crystals in natural environment has never been reported before. In addition, about a half of the studied crystals showed features of dissolution as cavities or holes inside of the crystals or around their edges. We found that differential dissolution of barite crystals is consequence of heterogeneous Sr distribution in barite crystals. Our results would help in understanding the biogeochemical processes of marine barite formation and preservation in seawater and marine sediments.
基金supported by the National Natural Science Foundation of China(No.51627802)the Inner Mongolia Science and Technology Revitalization Project,China(No.XM2020BT14)。
基金financially supported by the National Natural Science Foundation of China(52372191)the Natural Science Foundation of Xiamen,China(3502Z202372036)+1 种基金the China Postdoctoral Science Foundation(2022TQ0282)the support of the High-Performance Computing Center(HPCC)at Harbin Institute of Technology on first-principles calculations。
文摘It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.
基金supported by the Royal Society-Newton Advanced Fellowship(No.NA201244)the Natural Science Foundation of China(Nos.42061130212,41991321,41877351,41761144058,and 41730101)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research(STEP) Program(No.2019QZKK0707)the Fundamental Research Funds for the Central Universities(No.0206-14380124)support from the China Scholarship Council Fellowship。
文摘Radiogenic uranium isotope disequilibrium(^(234)U/^(238)U) has been used to trace a variety of Earth surface processes,and is usually attributed to direct recoil of ^(234)Th and preferential dissolution of radioactively damaged lattices at the mineral surface.However,the relative contribution of these two mechanisms in the natural environment remains unresolved,making it hard to use the extent of disequilibrium to quantify processes such as weathering.This study tests the contribution of preferential dissolution using well-characterized weathered moraines and river sediments from the southeastern Tibetan Plateau.The observations show that weathering of recent moraines where the contribution from direct recoil is negligible and is not associated with depletion of ^(234)U at the mineral surface.It suggests a limited role for preferential dissolution in this setting.We attribute this lack of preferential dissolution to a near-to-equilibrium dissolution at the weathering interfaces,with little development of etch pits associated with radioactively damaged energetic sites.
基金Projects(60504027,60573123) supported by the National Natural Science Foundation of ChinaProject(20060401037) supported by the National Postdoctor Science Foundation of ChinaProject(X106866) supported by the Natural Science Foundation of Zhejiang Province,China
文摘A novel scale-flee network model based on clique (complete subgraph of random size) growth and preferential attachment was proposed. The simulations of this model were carried out. And the necessity of two evolving mechanisms of the model was verified. According to the mean-field theory, the degree distribution of this model was analyzed and computed. The degree distribution function of vertices of the generating network P(d) is 2m^2m1^-3(d-m1 + 1)^-3, where m and m1 denote the number of the new adding edges and the vertex number of the cliques respectively, d is the degree of the vertex, while one of cliques P(k) is 2m^2Ek^-3, where k is the degree of the clique. The simulated and analytical results show that both the degree distributions of vertices and cliques follow the scale-flee power-law distribution. The scale-free property of this model disappears in the absence of any one of the evolving mechanisms. Moreover, the randomicity of this model increases with the increment of the vertex number of the cliques.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374082 and 51671048)the Ten Thousand Talents Plan of Zhejiang Province of China(Grant No.2018R52003)。
文摘A new crystal growth theoretical model is established for the low-dimensional nanocrystals on an isotropic and quasifree sustained substrate. The driven mechanism of the model is based on the competitive growth among the preferential growth directions of the crystals possessing anisotropic crystal structures, such as the hexagonal close-packed and wurtzite structures. The calculation results are in good agreement with the experimental findings in the growth process of the lowdimensional Zn nanocrystals on silicone oil surfaces. Our model shows a growth mechanism of various low-dimensional crystals on/in the isotropic substrates.
基金National Natural Science Foundation of China(Grant Nos.51504048,51874060,51874059 and 51611130062)The authors would like to acknowledge the members of Laboratory of Metallurgy and Materials,Chongqing University,for the support of this work.
文摘A combined model to predict austenite grains growth of titanium micro-alloyed as-cast steel during reheating process was established.The model invoIves the behaviors of austenite grains growth in continuous heating process and isothermal soaking process,and the variation of boundary pinning efficiency caused by the dissolution and coarsening kinetics of sec on d-phase particles was also con sidered into the model.Furthermore,the experimental verificatio ns were performed to examine the prediction power of the model.The results revealed that the mean austenite grains size increased with the increase in reheating temperature and soaking time,and the coarsening temperature of austenite grains growth was 1423 K under the current titanium content.In addition,the reliability of the predicted results in continuous heating process was validated by continuous heating experimenls.Moreover,an optimal regression expression of austenite grains growth in isothermal soaking process was obtained based on the experimental results.The compared results indicated that the combined model in conjunction with precipitates dissolution and coarsening kinetics had good reliability and accuracy to predict the austenite grains growth of titanium micro-alloyed casting steel during reheating process.