The improvement of machining behavior of prehardened-mould steel for plastic is realized by using computer-aided composition design in this work. The results showed that the matrix composition of large sectional preha...The improvement of machining behavior of prehardened-mould steel for plastic is realized by using computer-aided composition design in this work. The results showed that the matrix composition of large sectional prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the control of composition aided by Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition the modification of calcium is optimized in the light of composition design.展开更多
In order to improve the machinability but not to impair other properties of the prehardened mold steel for plastic, the composition was designed by application of Thermo-Calc software package to regulate the type of n...In order to improve the machinability but not to impair other properties of the prehardened mold steel for plastic, the composition was designed by application of Thermo-Calc software package to regulate the type of non-metallic inclusion formed in the steel. The regulated non-metallic inclusion type was also observed by SEM and EDX. Then the machinability assessment of the steel with designed composition under different conditions was studied by the measurement of tool wear amount and cutting force. The results show that the composition of free cutting elements adding to mold steel for plastic can be optimized to obtain proper type of non-metallic inclusion in the aid of Thermo-Calc, compared with the large volume fraction of soft inclusion which is needed for promoting ductile fracture at low cutting speeds, the proper type of inclusion at high cutting speeds is glassy oxide inclusion. All those can be obtained in the present work.展开更多
Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice mo...Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nh) systems and Co-V-C system were modeled. Solution parameters and thermodynamic: properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.展开更多
文摘The improvement of machining behavior of prehardened-mould steel for plastic is realized by using computer-aided composition design in this work. The results showed that the matrix composition of large sectional prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the control of composition aided by Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition the modification of calcium is optimized in the light of composition design.
基金Project(015211010) supported by the Key Project of Science and Technology Commission of Shanghai Local Govern ment China
文摘In order to improve the machinability but not to impair other properties of the prehardened mold steel for plastic, the composition was designed by application of Thermo-Calc software package to regulate the type of non-metallic inclusion formed in the steel. The regulated non-metallic inclusion type was also observed by SEM and EDX. Then the machinability assessment of the steel with designed composition under different conditions was studied by the measurement of tool wear amount and cutting force. The results show that the composition of free cutting elements adding to mold steel for plastic can be optimized to obtain proper type of non-metallic inclusion in the aid of Thermo-Calc, compared with the large volume fraction of soft inclusion which is needed for promoting ductile fracture at low cutting speeds, the proper type of inclusion at high cutting speeds is glassy oxide inclusion. All those can be obtained in the present work.
文摘Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nh) systems and Co-V-C system were modeled. Solution parameters and thermodynamic: properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.