Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al...Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.展开更多
The flow field in a cold model of 2500 t/d five-stage cyclone preheater and precalciner system was numerically simulated. Renault stress model (RSM) turbulent model was adopted to simulate the flow field, and a hybrid...The flow field in a cold model of 2500 t/d five-stage cyclone preheater and precalciner system was numerically simulated. Renault stress model (RSM) turbulent model was adopted to simulate the flow field, and a hybrid mesh scheme was selected to generate calculation mesh. With the first order upwind difference, finite-volume method was used to convert turbulent equations into difference equations pressure-velocity coupling which were solved by the classic simple algorithm, and during the course of numerical solution, mesh self-adapting technology was applied. The main flow field structures of the whole system and each part of the cold model were studied by analyzing the simulation results.展开更多
The effects of preheat treatments on the microstructures and mechanical properties of tungsten inert gas (TIG)-welded AZ61 magnesium alloy joints were studied by microstructural observations, microhardness tests and...The effects of preheat treatments on the microstructures and mechanical properties of tungsten inert gas (TIG)-welded AZ61 magnesium alloy joints were studied by microstructural observations, microhardness tests and tensile tests. The results showed that the vol- ume fraction of the lamellar β-Mg17(Al,Zn)12 intermetallic compound of in fusion zone (FZ) increased from 15% to 66% with an increase in preheat temperature. Moreover, the microhardness of the FZ and the ultimate tensile strength of the welded joints reached their maximum values when the preheat temperature was 300℃ because more lamellar β-Mg17(Al,Zn)12 intermetallic compounds were distributed at the α-Mg grain boundaries and no cracks and pores formed in the FZ of the welded joint.展开更多
A mathematical model of drying and preheating processes in a traveling grate was presented based on the laws of mass, momen- tum, heat transfer, and drying semiempirical relations. A field test was systematically carr...A mathematical model of drying and preheating processes in a traveling grate was presented based on the laws of mass, momen- tum, heat transfer, and drying semiempirical relations. A field test was systematically carried out in a traveling grate. The effects of pellet diameter, moisture, grate velocity, and inlet gas temperature on the pellet bed temperature were studied. The average relative error between actual measurements and simulations is less than 7.97%, indicating the validity of the model.展开更多
This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and th...This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.展开更多
In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about th...In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.展开更多
Ammonium bisulfate(ABS)is a viscous compound produced by the escape NH_(3) in the NO reduction process and SO_(3) in the flue gas at a certain temperature,which can cause the ash corrosion of the air preheater in coal...Ammonium bisulfate(ABS)is a viscous compound produced by the escape NH_(3) in the NO reduction process and SO_(3) in the flue gas at a certain temperature,which can cause the ash corrosion of the air preheater in coal-fired power plants.Therefore,it is essential to study the formation temperature of ABS to prevent the deposition of ABS in air preheaters.In this paper,the SO_(3) reaction kinetic model is used to analyze the SO_(3) generation process from coal combustion to the selective catalytic reduction(SCR)exit stage,and the kinetic model of NO reduction is used to analyze the NH_(3) escape process.A prediction model for calculating the ABS formation temperature based on the S content in coal and NO reduction parameters of the SCR is proposed,solving the difficulty of measuring SO_(3) concentration and NH_(3) concentration in the previous calculation equation of ABS formation temperature.And the reliability of the model is verified by the actual data of the power plant.Then the influence of S content in coal,NH_(3)/NO_(x) molar ratio,different NO_(x) concentrations at SCR inlet,and NO removal efficiency on the formation temperature of ABS are analyzed.展开更多
Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal character...Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal characteristic of copper C I 1000 during the FSW process. The model incorporates the mechanical reaction of the tool and thermo-mechanieal characteristics of the weld material, while the friction between the material and the probe and the shoulder serves as the heat source. It was observed that the predicted results about the temperature were in good compatibility with the experimental results. Additionally, it was concluded that the numerical method can be simply applied to measuring the temperature of workpiece just beneath the tool. The effects of preheating temperature and pin angle on temperature distribution were also studied numerically. The increase of pin angle enhances the temperature around the weld line, but preheating does not affect temperature distribution along the weld line considerably.展开更多
In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three t...In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three types of monoliths were used for experiments and the temperature of preheated air was respectively 50℃ , 100℃ and 200℃ . The results showed that preheated air made radial temperature in the catalytic monolith uniform which helped to avoid local hot spots so as to decrease NOx emission. The experiment also proved that the shorter monolith showed much better catalytic combustion performance than longer one and the temperature at the exit of the shorter monolith was relatively lower. On the contrary, the temperature was higher in the longer monolith and the lethal NOx emission was slightly increased.展开更多
Under the spirit of sustainable development, ‘lightweight’ has been gradually included into the vehicle design criterion by many manufacturers and used in automobile production. Following this trend, domestic wheel ...Under the spirit of sustainable development, ‘lightweight’ has been gradually included into the vehicle design criterion by many manufacturers and used in automobile production. Following this trend, domestic wheel suppliers also begin to study the technology of lightweight wheel. One way to achieve this goal is improving strength grade of the steel and optimizing the structure design in the field of steel wheels. But there are a few problems in flash butt welding process in the application of high strength steel, leading to high rejection rates. SW400 steel is a special high strength wheel steel developed by Benxi Steel. Taking SW400 steel as the research material, this article studys the feasibility of improving the properties of rim flash butt welded joints by adding preheating process.展开更多
The present work investigated the effects of pin profiles(cylindrical and square),pin eccentricity(0.5 mm and 1 mm)in cylindrical tool and preheating(secondary heating)on metallurgical behavior,variation of vibro-acou...The present work investigated the effects of pin profiles(cylindrical and square),pin eccentricity(0.5 mm and 1 mm)in cylindrical tool and preheating(secondary heating)on metallurgical behavior,variation of vibro-acoustic signal pattern and joint strength during friction stir welding(FSW)between AA6061-T6 and AA7075-T651 alloys.The eccentric tool pins were observed to provide good flowability and intermixing between dissimilar metals,increased the size of stir zone,and the grains in stir zone were sufficiently finer with eccentric tool pin than concentric pin.The magnitude of vibro-acoustic signal increased when shoulder plunging started and drop in signal was noted when the tool shoulder reached its desired depth.The signal magnitude was noted to be higher in welding stage compared to tool plunging stage as the tool took in fresh material during tool movement along the weld path.Preheating the workpiece prior to pin plunging and during welding notably influenced the flow behavior and mixing pattern,and the grains in stir zone were slightly coarser than those in specimen without preheating.Significant reduction in the magnitude of the signal was also observed after preheating.Tensile and flexural strength of joints were also improved slightly when additional heating was employed.展开更多
Electron beam selective melting(EBM)and selective laser melting(SLM)are regarded as significant manufacturing processes for near-net-shaped Ti6Al4V components.Generally,in the conventional EBM process,preheating is ne...Electron beam selective melting(EBM)and selective laser melting(SLM)are regarded as significant manufacturing processes for near-net-shaped Ti6Al4V components.Generally,in the conventional EBM process,preheating is necessitated to avoid"smoke"caused by the charging of electrons.In the conventional SLM process,laser as an energy source without the risk of"smoke"can be employed to melt metal powder at low temperatures.However,because of the low absorption rate of laser,the powder bed temperature cannot reach a high level.It is difficult to obtain as-built TiAl4V with favorable comprehensive properties via conventional EBM or SLM.Hence,two types of electron beam and laser hybrid preheating(EB-LHP)combined with selective melting strategies are proposed.Using laser to preheat powder allows EBM to be performed at a low powder bed temperature(EBM-LT),whereas using an electron beam to preheat powder allows SLM to be performed at a high powder bed temperature(SLM-HT).Ti6Al4V samples are fabricated using two different manufacturing strategies(i.e.,EBM-LT and SLM-HT)and two conventional processes,i.e.,EBM at a high powder bed temperature(EBM-HT)and SLM at a low powder bed temperature(SLM-LT).The temperature-dependent surface quality,microstructure,density,and mechanical properties of the as-built Ti6Al4V samples are characterized and compared.Results show that EBM-LT Ti6Al4V exhibits a higher ultimate tensile strength(981±43 MPa)and a lower elongation(12.2%±2.3%)than EBM-HT Ti6Al4V owing to the presence ofα′martensite.The SLM-HT Ti6Al4V possesses the highest ultimate tensile strength(1,059±62 MPa)and an elongation(14.8%±4.0%)comparable to that of the EBM-HT Ti6Al4V(16.6%±1.2%).展开更多
The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 30...The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 300℃, 350℃ and 400℃?before gas metal arc filling to simulate defects repair. Another sample, welded at room temperature (RT) with no preheat, was studied in comparison. The parent rail steel has ultimate strength, yield strength and strain to failure of 1146 MPa, 717 MPa and 9.3%, respectively. Optimum values of these properties for the welded rail steels were found to be 1023 MPa, 655 MPa and 4.7%, respectively, for the 200℃ preheat temperature. On this basis, the optimum weld efficiency was found to be 89.2%. The average apparent fracture toughness KI for the parent rail was 127 MPa.m0.5, while that for the optimum welded joint (200℃ preheat) was 116.5 MPa.m0.5. In addition, the average hardness values of the weld, fusion zone, and heat affected zone (HAZ) were 313.5, 332 and 313.6 HB, respectively, while that for parent rail steel was about 360 HB. Dominance of bainite and acicular ferrite phase in the weld microstructure was observed at 200℃ preheat.展开更多
A new type of non-preheated hardfacing electrode was developed using H08A as the core and the coat contents including ferrotitaninm, ferrovanadium, graphite, rutile etc. The microstrnctures and properties of hardfacin...A new type of non-preheated hardfacing electrode was developed using H08A as the core and the coat contents including ferrotitaninm, ferrovanadium, graphite, rutile etc. The microstrnctures and properties of hardfacing metal were systematically researched. The results show the hardness of hardfacing metal increases with increasing of ferrotitanium, ferrovanadium, graphite in the coat, but the crack resistance and processing weldability become worse. The carbides formed by arc metallurgic reaction are uniformly dispersed in the matrix structure. The phases of hardfacing metal consist of α-Fe, γ-Fe, VC, TiC and Fe3 C.The carbides are compression aggregation of TiC and VC, and their appearances present irregular block. The matrix microstrncture of hardfacing metal is lath martensite. The hardfacing layers with better crack resistance and wearability are achieved and no visible cracks occur when using non-preheated electrode in continuous welding process. Hardness of hardfacing metal is more than 60HRC, and its relative wearability is five times of wearability of D667 electrode in abrasive wear test.展开更多
Reaction zone characteristics were studied using hydroxy radical planar laser-induced fluorescence (OH-PLIF) technique for a counter-flow preheated (CH4+N2)/(Air+N2) diluted diffusion flames. The effects of pr...Reaction zone characteristics were studied using hydroxy radical planar laser-induced fluorescence (OH-PLIF) technique for a counter-flow preheated (CH4+N2)/(Air+N2) diluted diffusion flames. The effects of preheat temperature and dilute ratio on the reaction zone characteristics were investigated by demonstrating the OH intensity distribution and reaction zone thickness from OH-PLIF images. Under the experimental conditions of constant cold flow velocity, the results show that the OH intensity and reaction zone thickness decrease with the increase of dilute ratio at constant preheat temperature and increase with preheat temperature at fixed dilute ratio. The OH maximum intensity shifts towards the "lean" side of counter flow at constant preheat temperature, and it shifts towards the fuel side with the increase of dilute ratio of fuel stream and towards the oxidizer side with the increase of dilute ratio of oxidizer stream respectively. The feasibility of OH as a reaction zone marker in this diluted combustion is verified further. The variation of diffusion and chemical reaction rate of reactants due to preheat and dilution contributes to the reaction zone characteristics simultaneously. The effect of strain on the flame reaction zone should be included in the future work.展开更多
The influence of equal channel angular extrusion preheating on the microstructure of NiTi was examined. Temperatures under non-isothermal condition is 750, 850 and 950 ℃, and ram speed was 25 mm·s^(-1). The micr...The influence of equal channel angular extrusion preheating on the microstructure of NiTi was examined. Temperatures under non-isothermal condition is 750, 850 and 950 ℃, and ram speed was 25 mm·s^(-1). The micrographs showed that processing by each of the three temperatures via ECAE can refine the initial coarse grains of NiTi (as-received) after the first pass, and the developments of microstructure were quite different under different hot-working conditions. The influence of ECAE preheating (including temperature and time) on the microstructure of nickel-titanium was analyzed.展开更多
In this research, the nonlinear evolution of jet-like spikes in the single-mode ablative Rayleigh-Taylor instability (ARTI) in the presence of preheating, is studied numerically. It is demonstrated that the preheati...In this research, the nonlinear evolution of jet-like spikes in the single-mode ablative Rayleigh-Taylor instability (ARTI) in the presence of preheating, is studied numerically. It is demonstrated that the preheating plays an essential role in the formation of jet-like spikes in the nonlinear ARTI. The evolution of jet-like spikes in the ARTI with preheating consists of three stages with distinctly different distinguishing features. In the early stage, the preheating contributes to significantly increase the density-gradient scale length and broaden the velocity profile of the ablation surface, where the former can reduce the linear growth of the ARTI and mitigate the growth of its harmonics. In the middle stage, the ablative Kelvin-Helmholtz instability is dramatically suppressed due to the ablation effects. In the late stage, the jet's length (i.e. bubble-spike amplitude) is further increased by the bubble acceleration in the highly nonlinear ARTI, resulting eventually in the formation of jet-like spikes.展开更多
Selective laser sintering (SLS) is an important Rapid Prototyping method because its wide range of materials. The powder is fused and processed into a part because it is heated in the process. Preheating of powder on ...Selective laser sintering (SLS) is an important Rapid Prototyping method because its wide range of materials. The powder is fused and processed into a part because it is heated in the process. Preheating of powder on the surface of powder bed is a one important process which is a guarantee by which parts can be successfully fabricated and influences accuracy of parts fabricated in SLS technology. The uniformity of temperature on powder bed influences accuracy and performance of parts. It is necessary to understand the influences of the parameters of preheating set on uniformity of temperature on surface of powder bed. This paper analyzes general preheating process of irradiator for the preheating of powder on the surface of powder bed during SLS processing, and investigates influences of the flux density on the temperature field on the top surface of powder bed. The models of distribution of flux density and the distribution of surface temperature of powder bed are presented. The result predicted according to the models is reasonably consistent with experimental result. This model plays important role in design of preheating set and control of SLS processing. It is concluded that the uniformity of temperature field on the powder bed is determined mostly by the geometry of heating component and its fix location and the flux density is inverse proportional to the highness.展开更多
It is presented that a feasibility assessment of solar preheating of steam boiler feed water for opened vapor systems. Data from a medium sized dairy industry near Rio de Janeiro city, in Brazil, is used to compose a ...It is presented that a feasibility assessment of solar preheating of steam boiler feed water for opened vapor systems. Data from a medium sized dairy industry near Rio de Janeiro city, in Brazil, is used to compose a case study. Forty eight solar heating system computer simulations were carried out in TRNSYS (transient system simulation software), for a range of design parameters corresponding to the 5% best economic results of a series of 2,700 simpler simulations (φ,f-chart method), programmed on Matlab. It has been used TMY (typical meteorological year) hourly weather data from Rio de Janeiro. Investment cost was composed from both commercial and literature values, while revenue was based on the avoided consumption of fuel for LPG (liquefied petroleum gas), natural gas and fuel oil, with only the first showing economically feasible. The results, however, made it possible to address environmentally sound public policies to encourage industrial solar energy use.展开更多
The three dimensiotud transient weld pool dynamics are numerically analyzed ,for Forcearc welding, which is a new gas metal arc welding technology to get deep fusion penetration with smaller angle sf V groove to enhan...The three dimensiotud transient weld pool dynamics are numerically analyzed ,for Forcearc welding, which is a new gas metal arc welding technology to get deep fusion penetration with smaller angle sf V groove to enhance welding efficiency significantly. The influence of groove angle and preheatin,g temperature on heat and .fluid .flow is studied and compared to get an optimal welding parameter. Good agreement is shown between the predicted and experimental results, such as weld bead cross-section and thermal cycles. It can he seen that an apprpriate groove angle could be used to replace high preheating temperature to get inproced penetration and thermal cycles.展开更多
文摘Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.
文摘The flow field in a cold model of 2500 t/d five-stage cyclone preheater and precalciner system was numerically simulated. Renault stress model (RSM) turbulent model was adopted to simulate the flow field, and a hybrid mesh scheme was selected to generate calculation mesh. With the first order upwind difference, finite-volume method was used to convert turbulent equations into difference equations pressure-velocity coupling which were solved by the classic simple algorithm, and during the course of numerical solution, mesh self-adapting technology was applied. The main flow field structures of the whole system and each part of the cold model were studied by analyzing the simulation results.
基金supported by the Key Scientific and Technological Project of Chongqing (No.CSTC, 2009AC4046)Natural Science Foundation Project of CQ CSTC (No. CSTC, 2010BB4039) Fundamental Research Funds for the Central Universities of China (Nos.CDJZR10130010 and CDJXS10131155)
文摘The effects of preheat treatments on the microstructures and mechanical properties of tungsten inert gas (TIG)-welded AZ61 magnesium alloy joints were studied by microstructural observations, microhardness tests and tensile tests. The results showed that the vol- ume fraction of the lamellar β-Mg17(Al,Zn)12 intermetallic compound of in fusion zone (FZ) increased from 15% to 66% with an increase in preheat temperature. Moreover, the microhardness of the FZ and the ultimate tensile strength of the welded joints reached their maximum values when the preheat temperature was 300℃ because more lamellar β-Mg17(Al,Zn)12 intermetallic compounds were distributed at the α-Mg grain boundaries and no cracks and pores formed in the FZ of the welded joint.
基金supported by the National High-Tech Research and Development Program of China (No.2007AA05Z215)
文摘A mathematical model of drying and preheating processes in a traveling grate was presented based on the laws of mass, momen- tum, heat transfer, and drying semiempirical relations. A field test was systematically carried out in a traveling grate. The effects of pellet diameter, moisture, grate velocity, and inlet gas temperature on the pellet bed temperature were studied. The average relative error between actual measurements and simulations is less than 7.97%, indicating the validity of the model.
基金Supported by the National Iranian Oil Company (NIOC)
文摘This numerical study investigates the effects of using a diluted fuel (50% natural gas and 50% N2) in an industrial furnace under several cases of conventional combustion (air with 21% O2 at 300 and 1273 K) and the highly preheated and diluted air (1273 K with 10% O2 and 90% N2) combustion (HPDAC) conditions using an in-house computer program. It was found that by applying a combined diluted fuel and oxidant instead of their uncombined and/or undiluted states, the best condition is obtained for the establishment of HPDAC's main unique features. These features are low mean and maximum gas temperature and high radiation/total heat transfer to gas and tubes; as well as more uniformity of theirs distributions which results in decrease in NOx pollutant formation and increase in furnace efficiency or energy saving. Moreover, a variety of chemical flame shape, the process fluid and tubes walls temperatures profiles, the required regenerator efficiency and finally the concentration and velocity patterns have been also qualitatively/quantitatively studied.
文摘In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.
基金the Key Research and Development Plan of Shandong Province (2019GSF109004)Natural Science Foundation of Shandong Province (ZR2020ME190) for funding and supporting this work
文摘Ammonium bisulfate(ABS)is a viscous compound produced by the escape NH_(3) in the NO reduction process and SO_(3) in the flue gas at a certain temperature,which can cause the ash corrosion of the air preheater in coal-fired power plants.Therefore,it is essential to study the formation temperature of ABS to prevent the deposition of ABS in air preheaters.In this paper,the SO_(3) reaction kinetic model is used to analyze the SO_(3) generation process from coal combustion to the selective catalytic reduction(SCR)exit stage,and the kinetic model of NO reduction is used to analyze the NH_(3) escape process.A prediction model for calculating the ABS formation temperature based on the S content in coal and NO reduction parameters of the SCR is proposed,solving the difficulty of measuring SO_(3) concentration and NH_(3) concentration in the previous calculation equation of ABS formation temperature.And the reliability of the model is verified by the actual data of the power plant.Then the influence of S content in coal,NH_(3)/NO_(x) molar ratio,different NO_(x) concentrations at SCR inlet,and NO removal efficiency on the formation temperature of ABS are analyzed.
文摘Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal characteristic of copper C I 1000 during the FSW process. The model incorporates the mechanical reaction of the tool and thermo-mechanieal characteristics of the weld material, while the friction between the material and the probe and the shoulder serves as the heat source. It was observed that the predicted results about the temperature were in good compatibility with the experimental results. Additionally, it was concluded that the numerical method can be simply applied to measuring the temperature of workpiece just beneath the tool. The effects of preheating temperature and pin angle on temperature distribution were also studied numerically. The increase of pin angle enhances the temperature around the weld line, but preheating does not affect temperature distribution along the weld line considerably.
基金Supported by the Key Project of the National 973 Program of China (No.2005CB724201)the Natural Science Foundation ofBeijing (No.06C0002)the Beijing Education Commission Key Laboratory of Heat Transfer and Energy Conversion Fund(No.05005790200406).
文摘In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC), NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied. Three types of monoliths were used for experiments and the temperature of preheated air was respectively 50℃ , 100℃ and 200℃ . The results showed that preheated air made radial temperature in the catalytic monolith uniform which helped to avoid local hot spots so as to decrease NOx emission. The experiment also proved that the shorter monolith showed much better catalytic combustion performance than longer one and the temperature at the exit of the shorter monolith was relatively lower. On the contrary, the temperature was higher in the longer monolith and the lethal NOx emission was slightly increased.
基金supported by the Key Science and Technology of Jilin Province(Grant No.20140204070GX)
文摘Under the spirit of sustainable development, ‘lightweight’ has been gradually included into the vehicle design criterion by many manufacturers and used in automobile production. Following this trend, domestic wheel suppliers also begin to study the technology of lightweight wheel. One way to achieve this goal is improving strength grade of the steel and optimizing the structure design in the field of steel wheels. But there are a few problems in flash butt welding process in the application of high strength steel, leading to high rejection rates. SW400 steel is a special high strength wheel steel developed by Benxi Steel. Taking SW400 steel as the research material, this article studys the feasibility of improving the properties of rim flash butt welded joints by adding preheating process.
基金the financial support received from Science and Engineering Research Board (SERB) of DST, New Delhi, India, for the present work (project number: YSS/2015/000085)
文摘The present work investigated the effects of pin profiles(cylindrical and square),pin eccentricity(0.5 mm and 1 mm)in cylindrical tool and preheating(secondary heating)on metallurgical behavior,variation of vibro-acoustic signal pattern and joint strength during friction stir welding(FSW)between AA6061-T6 and AA7075-T651 alloys.The eccentric tool pins were observed to provide good flowability and intermixing between dissimilar metals,increased the size of stir zone,and the grains in stir zone were sufficiently finer with eccentric tool pin than concentric pin.The magnitude of vibro-acoustic signal increased when shoulder plunging started and drop in signal was noted when the tool shoulder reached its desired depth.The signal magnitude was noted to be higher in welding stage compared to tool plunging stage as the tool took in fresh material during tool movement along the weld path.Preheating the workpiece prior to pin plunging and during welding notably influenced the flow behavior and mixing pattern,and the grains in stir zone were slightly coarser than those in specimen without preheating.Significant reduction in the magnitude of the signal was also observed after preheating.Tensile and flexural strength of joints were also improved slightly when additional heating was employed.
基金the National Key R&D Program(2018YFB1105200)111 Project(B17026)Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment(SKL2019006)。
文摘Electron beam selective melting(EBM)and selective laser melting(SLM)are regarded as significant manufacturing processes for near-net-shaped Ti6Al4V components.Generally,in the conventional EBM process,preheating is necessitated to avoid"smoke"caused by the charging of electrons.In the conventional SLM process,laser as an energy source without the risk of"smoke"can be employed to melt metal powder at low temperatures.However,because of the low absorption rate of laser,the powder bed temperature cannot reach a high level.It is difficult to obtain as-built TiAl4V with favorable comprehensive properties via conventional EBM or SLM.Hence,two types of electron beam and laser hybrid preheating(EB-LHP)combined with selective melting strategies are proposed.Using laser to preheat powder allows EBM to be performed at a low powder bed temperature(EBM-LT),whereas using an electron beam to preheat powder allows SLM to be performed at a high powder bed temperature(SLM-HT).Ti6Al4V samples are fabricated using two different manufacturing strategies(i.e.,EBM-LT and SLM-HT)and two conventional processes,i.e.,EBM at a high powder bed temperature(EBM-HT)and SLM at a low powder bed temperature(SLM-LT).The temperature-dependent surface quality,microstructure,density,and mechanical properties of the as-built Ti6Al4V samples are characterized and compared.Results show that EBM-LT Ti6Al4V exhibits a higher ultimate tensile strength(981±43 MPa)and a lower elongation(12.2%±2.3%)than EBM-HT Ti6Al4V owing to the presence ofα′martensite.The SLM-HT Ti6Al4V possesses the highest ultimate tensile strength(1,059±62 MPa)and an elongation(14.8%±4.0%)comparable to that of the EBM-HT Ti6Al4V(16.6%±1.2%).
文摘The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 300℃, 350℃ and 400℃?before gas metal arc filling to simulate defects repair. Another sample, welded at room temperature (RT) with no preheat, was studied in comparison. The parent rail steel has ultimate strength, yield strength and strain to failure of 1146 MPa, 717 MPa and 9.3%, respectively. Optimum values of these properties for the welded rail steels were found to be 1023 MPa, 655 MPa and 4.7%, respectively, for the 200℃ preheat temperature. On this basis, the optimum weld efficiency was found to be 89.2%. The average apparent fracture toughness KI for the parent rail was 127 MPa.m0.5, while that for the optimum welded joint (200℃ preheat) was 116.5 MPa.m0.5. In addition, the average hardness values of the weld, fusion zone, and heat affected zone (HAZ) were 313.5, 332 and 313.6 HB, respectively, while that for parent rail steel was about 360 HB. Dominance of bainite and acicular ferrite phase in the weld microstructure was observed at 200℃ preheat.
文摘A new type of non-preheated hardfacing electrode was developed using H08A as the core and the coat contents including ferrotitaninm, ferrovanadium, graphite, rutile etc. The microstrnctures and properties of hardfacing metal were systematically researched. The results show the hardness of hardfacing metal increases with increasing of ferrotitanium, ferrovanadium, graphite in the coat, but the crack resistance and processing weldability become worse. The carbides formed by arc metallurgic reaction are uniformly dispersed in the matrix structure. The phases of hardfacing metal consist of α-Fe, γ-Fe, VC, TiC and Fe3 C.The carbides are compression aggregation of TiC and VC, and their appearances present irregular block. The matrix microstrncture of hardfacing metal is lath martensite. The hardfacing layers with better crack resistance and wearability are achieved and no visible cracks occur when using non-preheated electrode in continuous welding process. Hardness of hardfacing metal is more than 60HRC, and its relative wearability is five times of wearability of D667 electrode in abrasive wear test.
基金supported by the CNRS "ACI-Energie" Program of France and the National Nature Science Foundation of China (No.50606004)
文摘Reaction zone characteristics were studied using hydroxy radical planar laser-induced fluorescence (OH-PLIF) technique for a counter-flow preheated (CH4+N2)/(Air+N2) diluted diffusion flames. The effects of preheat temperature and dilute ratio on the reaction zone characteristics were investigated by demonstrating the OH intensity distribution and reaction zone thickness from OH-PLIF images. Under the experimental conditions of constant cold flow velocity, the results show that the OH intensity and reaction zone thickness decrease with the increase of dilute ratio at constant preheat temperature and increase with preheat temperature at fixed dilute ratio. The OH maximum intensity shifts towards the "lean" side of counter flow at constant preheat temperature, and it shifts towards the fuel side with the increase of dilute ratio of fuel stream and towards the oxidizer side with the increase of dilute ratio of oxidizer stream respectively. The feasibility of OH as a reaction zone marker in this diluted combustion is verified further. The variation of diffusion and chemical reaction rate of reactants due to preheat and dilution contributes to the reaction zone characteristics simultaneously. The effect of strain on the flame reaction zone should be included in the future work.
文摘The influence of equal channel angular extrusion preheating on the microstructure of NiTi was examined. Temperatures under non-isothermal condition is 750, 850 and 950 ℃, and ram speed was 25 mm·s^(-1). The micrographs showed that processing by each of the three temperatures via ECAE can refine the initial coarse grains of NiTi (as-received) after the first pass, and the developments of microstructure were quite different under different hot-working conditions. The influence of ECAE preheating (including temperature and time) on the microstructure of nickel-titanium was analyzed.
基金supported by National Natural Science Foundation of China(Nos.10935003,11275031,11075024,11074300 and 11274026)National Basic Research Program of China(No.2013CB834100)China Postdoctoral Science Foundation(Nos.2011M500181,2012T50018)
文摘In this research, the nonlinear evolution of jet-like spikes in the single-mode ablative Rayleigh-Taylor instability (ARTI) in the presence of preheating, is studied numerically. It is demonstrated that the preheating plays an essential role in the formation of jet-like spikes in the nonlinear ARTI. The evolution of jet-like spikes in the ARTI with preheating consists of three stages with distinctly different distinguishing features. In the early stage, the preheating contributes to significantly increase the density-gradient scale length and broaden the velocity profile of the ablation surface, where the former can reduce the linear growth of the ARTI and mitigate the growth of its harmonics. In the middle stage, the ablative Kelvin-Helmholtz instability is dramatically suppressed due to the ablation effects. In the late stage, the jet's length (i.e. bubble-spike amplitude) is further increased by the bubble acceleration in the highly nonlinear ARTI, resulting eventually in the formation of jet-like spikes.
文摘Selective laser sintering (SLS) is an important Rapid Prototyping method because its wide range of materials. The powder is fused and processed into a part because it is heated in the process. Preheating of powder on the surface of powder bed is a one important process which is a guarantee by which parts can be successfully fabricated and influences accuracy of parts fabricated in SLS technology. The uniformity of temperature on powder bed influences accuracy and performance of parts. It is necessary to understand the influences of the parameters of preheating set on uniformity of temperature on surface of powder bed. This paper analyzes general preheating process of irradiator for the preheating of powder on the surface of powder bed during SLS processing, and investigates influences of the flux density on the temperature field on the top surface of powder bed. The models of distribution of flux density and the distribution of surface temperature of powder bed are presented. The result predicted according to the models is reasonably consistent with experimental result. This model plays important role in design of preheating set and control of SLS processing. It is concluded that the uniformity of temperature field on the powder bed is determined mostly by the geometry of heating component and its fix location and the flux density is inverse proportional to the highness.
文摘It is presented that a feasibility assessment of solar preheating of steam boiler feed water for opened vapor systems. Data from a medium sized dairy industry near Rio de Janeiro city, in Brazil, is used to compose a case study. Forty eight solar heating system computer simulations were carried out in TRNSYS (transient system simulation software), for a range of design parameters corresponding to the 5% best economic results of a series of 2,700 simpler simulations (φ,f-chart method), programmed on Matlab. It has been used TMY (typical meteorological year) hourly weather data from Rio de Janeiro. Investment cost was composed from both commercial and literature values, while revenue was based on the avoided consumption of fuel for LPG (liquefied petroleum gas), natural gas and fuel oil, with only the first showing economically feasible. The results, however, made it possible to address environmentally sound public policies to encourage industrial solar energy use.
文摘The three dimensiotud transient weld pool dynamics are numerically analyzed ,for Forcearc welding, which is a new gas metal arc welding technology to get deep fusion penetration with smaller angle sf V groove to enhance welding efficiency significantly. The influence of groove angle and preheatin,g temperature on heat and .fluid .flow is studied and compared to get an optimal welding parameter. Good agreement is shown between the predicted and experimental results, such as weld bead cross-section and thermal cycles. It can he seen that an apprpriate groove angle could be used to replace high preheating temperature to get inproced penetration and thermal cycles.