Innovatively addressing the challenge of difficult winter starts for vehicles in northern regions,this study has developed a Thermally Controlled Preheating Engine Activation System.This system ingeniously integrates ...Innovatively addressing the challenge of difficult winter starts for vehicles in northern regions,this study has developed a Thermally Controlled Preheating Engine Activation System.This system ingeniously integrates a thermal insulation kettle,an efficient water pump,precision valves,and temperature sensors,all closely linked with the engine’s coolant circulation system.In cold environments,the system automatically initiates a preheating mechanism by circulating and heating the coolant,significantly enhancing engine startup efficiency and reducing wear caused by cold starts.The anticipated outcome of this research is to substantially improve the operational reliability of vehicles in cold climates,extend their lifespan,promote energy conservation and emissions reduction,and drive the automotive industry towards greener,more efficient,and intelligent technologies,thus laying a solid foundation for industry upgrades and transformation.展开更多
A mathematical model of drying and preheating processes in a traveling grate was presented based on the laws of mass, momen- tum, heat transfer, and drying semiempirical relations. A field test was systematically carr...A mathematical model of drying and preheating processes in a traveling grate was presented based on the laws of mass, momen- tum, heat transfer, and drying semiempirical relations. A field test was systematically carried out in a traveling grate. The effects of pellet diameter, moisture, grate velocity, and inlet gas temperature on the pellet bed temperature were studied. The average relative error between actual measurements and simulations is less than 7.97%, indicating the validity of the model.展开更多
In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about th...In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.展开更多
Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal character...Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal characteristic of copper C I 1000 during the FSW process. The model incorporates the mechanical reaction of the tool and thermo-mechanieal characteristics of the weld material, while the friction between the material and the probe and the shoulder serves as the heat source. It was observed that the predicted results about the temperature were in good compatibility with the experimental results. Additionally, it was concluded that the numerical method can be simply applied to measuring the temperature of workpiece just beneath the tool. The effects of preheating temperature and pin angle on temperature distribution were also studied numerically. The increase of pin angle enhances the temperature around the weld line, but preheating does not affect temperature distribution along the weld line considerably.展开更多
Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al...Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.展开更多
The present work investigated the effects of pin profiles(cylindrical and square),pin eccentricity(0.5 mm and 1 mm)in cylindrical tool and preheating(secondary heating)on metallurgical behavior,variation of vibro-acou...The present work investigated the effects of pin profiles(cylindrical and square),pin eccentricity(0.5 mm and 1 mm)in cylindrical tool and preheating(secondary heating)on metallurgical behavior,variation of vibro-acoustic signal pattern and joint strength during friction stir welding(FSW)between AA6061-T6 and AA7075-T651 alloys.The eccentric tool pins were observed to provide good flowability and intermixing between dissimilar metals,increased the size of stir zone,and the grains in stir zone were sufficiently finer with eccentric tool pin than concentric pin.The magnitude of vibro-acoustic signal increased when shoulder plunging started and drop in signal was noted when the tool shoulder reached its desired depth.The signal magnitude was noted to be higher in welding stage compared to tool plunging stage as the tool took in fresh material during tool movement along the weld path.Preheating the workpiece prior to pin plunging and during welding notably influenced the flow behavior and mixing pattern,and the grains in stir zone were slightly coarser than those in specimen without preheating.Significant reduction in the magnitude of the signal was also observed after preheating.Tensile and flexural strength of joints were also improved slightly when additional heating was employed.展开更多
The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 30...The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 300℃, 350℃ and 400℃?before gas metal arc filling to simulate defects repair. Another sample, welded at room temperature (RT) with no preheat, was studied in comparison. The parent rail steel has ultimate strength, yield strength and strain to failure of 1146 MPa, 717 MPa and 9.3%, respectively. Optimum values of these properties for the welded rail steels were found to be 1023 MPa, 655 MPa and 4.7%, respectively, for the 200℃ preheat temperature. On this basis, the optimum weld efficiency was found to be 89.2%. The average apparent fracture toughness KI for the parent rail was 127 MPa.m0.5, while that for the optimum welded joint (200℃ preheat) was 116.5 MPa.m0.5. In addition, the average hardness values of the weld, fusion zone, and heat affected zone (HAZ) were 313.5, 332 and 313.6 HB, respectively, while that for parent rail steel was about 360 HB. Dominance of bainite and acicular ferrite phase in the weld microstructure was observed at 200℃ preheat.展开更多
Electron beam selective melting(EBM)and selective laser melting(SLM)are regarded as significant manufacturing processes for near-net-shaped Ti6Al4V components.Generally,in the conventional EBM process,preheating is ne...Electron beam selective melting(EBM)and selective laser melting(SLM)are regarded as significant manufacturing processes for near-net-shaped Ti6Al4V components.Generally,in the conventional EBM process,preheating is necessitated to avoid"smoke"caused by the charging of electrons.In the conventional SLM process,laser as an energy source without the risk of"smoke"can be employed to melt metal powder at low temperatures.However,because of the low absorption rate of laser,the powder bed temperature cannot reach a high level.It is difficult to obtain as-built TiAl4V with favorable comprehensive properties via conventional EBM or SLM.Hence,two types of electron beam and laser hybrid preheating(EB-LHP)combined with selective melting strategies are proposed.Using laser to preheat powder allows EBM to be performed at a low powder bed temperature(EBM-LT),whereas using an electron beam to preheat powder allows SLM to be performed at a high powder bed temperature(SLM-HT).Ti6Al4V samples are fabricated using two different manufacturing strategies(i.e.,EBM-LT and SLM-HT)and two conventional processes,i.e.,EBM at a high powder bed temperature(EBM-HT)and SLM at a low powder bed temperature(SLM-LT).The temperature-dependent surface quality,microstructure,density,and mechanical properties of the as-built Ti6Al4V samples are characterized and compared.Results show that EBM-LT Ti6Al4V exhibits a higher ultimate tensile strength(981±43 MPa)and a lower elongation(12.2%±2.3%)than EBM-HT Ti6Al4V owing to the presence ofα′martensite.The SLM-HT Ti6Al4V possesses the highest ultimate tensile strength(1,059±62 MPa)and an elongation(14.8%±4.0%)comparable to that of the EBM-HT Ti6Al4V(16.6%±1.2%).展开更多
The influence of equal channel angular extrusion preheating on the microstructure of NiTi was examined. Temperatures under non-isothermal condition is 750, 850 and 950 ℃, and ram speed was 25 mm·s^(-1). The micr...The influence of equal channel angular extrusion preheating on the microstructure of NiTi was examined. Temperatures under non-isothermal condition is 750, 850 and 950 ℃, and ram speed was 25 mm·s^(-1). The micrographs showed that processing by each of the three temperatures via ECAE can refine the initial coarse grains of NiTi (as-received) after the first pass, and the developments of microstructure were quite different under different hot-working conditions. The influence of ECAE preheating (including temperature and time) on the microstructure of nickel-titanium was analyzed.展开更多
In this research, the nonlinear evolution of jet-like spikes in the single-mode ablative Rayleigh-Taylor instability (ARTI) in the presence of preheating, is studied numerically. It is demonstrated that the preheati...In this research, the nonlinear evolution of jet-like spikes in the single-mode ablative Rayleigh-Taylor instability (ARTI) in the presence of preheating, is studied numerically. It is demonstrated that the preheating plays an essential role in the formation of jet-like spikes in the nonlinear ARTI. The evolution of jet-like spikes in the ARTI with preheating consists of three stages with distinctly different distinguishing features. In the early stage, the preheating contributes to significantly increase the density-gradient scale length and broaden the velocity profile of the ablation surface, where the former can reduce the linear growth of the ARTI and mitigate the growth of its harmonics. In the middle stage, the ablative Kelvin-Helmholtz instability is dramatically suppressed due to the ablation effects. In the late stage, the jet's length (i.e. bubble-spike amplitude) is further increased by the bubble acceleration in the highly nonlinear ARTI, resulting eventually in the formation of jet-like spikes.展开更多
Selective laser sintering (SLS) is an important Rapid Prototyping method because its wide range of materials. The powder is fused and processed into a part because it is heated in the process. Preheating of powder on ...Selective laser sintering (SLS) is an important Rapid Prototyping method because its wide range of materials. The powder is fused and processed into a part because it is heated in the process. Preheating of powder on the surface of powder bed is a one important process which is a guarantee by which parts can be successfully fabricated and influences accuracy of parts fabricated in SLS technology. The uniformity of temperature on powder bed influences accuracy and performance of parts. It is necessary to understand the influences of the parameters of preheating set on uniformity of temperature on surface of powder bed. This paper analyzes general preheating process of irradiator for the preheating of powder on the surface of powder bed during SLS processing, and investigates influences of the flux density on the temperature field on the top surface of powder bed. The models of distribution of flux density and the distribution of surface temperature of powder bed are presented. The result predicted according to the models is reasonably consistent with experimental result. This model plays important role in design of preheating set and control of SLS processing. It is concluded that the uniformity of temperature field on the powder bed is determined mostly by the geometry of heating component and its fix location and the flux density is inverse proportional to the highness.展开更多
In this paper, the influence of preheating on the layer microstructure and properties is analyzed in the layer metal microstructure. The influence of preheating temperature on the shape and amount of primary carbides ...In this paper, the influence of preheating on the layer microstructure and properties is analyzed in the layer metal microstructure. The influence of preheating temperature on the shape and amount of primary carbides and borides little, but on initial γ-dendrites is large. With the increasing of preheating temperature, little by little the γ-dendrites , which grown from parent material to layer, are flourishing to disappearing, and the microhardness at the center of the layer is increasing.展开更多
The three dimensiotud transient weld pool dynamics are numerically analyzed ,for Forcearc welding, which is a new gas metal arc welding technology to get deep fusion penetration with smaller angle sf V groove to enhan...The three dimensiotud transient weld pool dynamics are numerically analyzed ,for Forcearc welding, which is a new gas metal arc welding technology to get deep fusion penetration with smaller angle sf V groove to enhance welding efficiency significantly. The influence of groove angle and preheatin,g temperature on heat and .fluid .flow is studied and compared to get an optimal welding parameter. Good agreement is shown between the predicted and experimental results, such as weld bead cross-section and thermal cycles. It can he seen that an apprpriate groove angle could be used to replace high preheating temperature to get inproced penetration and thermal cycles.展开更多
It is presented that a feasibility assessment of solar preheating of steam boiler feed water for opened vapor systems. Data from a medium sized dairy industry near Rio de Janeiro city, in Brazil, is used to compose a ...It is presented that a feasibility assessment of solar preheating of steam boiler feed water for opened vapor systems. Data from a medium sized dairy industry near Rio de Janeiro city, in Brazil, is used to compose a case study. Forty eight solar heating system computer simulations were carried out in TRNSYS (transient system simulation software), for a range of design parameters corresponding to the 5% best economic results of a series of 2,700 simpler simulations (φ,f-chart method), programmed on Matlab. It has been used TMY (typical meteorological year) hourly weather data from Rio de Janeiro. Investment cost was composed from both commercial and literature values, while revenue was based on the avoided consumption of fuel for LPG (liquefied petroleum gas), natural gas and fuel oil, with only the first showing economically feasible. The results, however, made it possible to address environmentally sound public policies to encourage industrial solar energy use.展开更多
Focus-offset collinear dual-pulse laser-induced breakdown spectroscopy is designed and used to investigate the laser ablation and spectral intensity with an aluminum alloy sample.The laser crater morphologies and abla...Focus-offset collinear dual-pulse laser-induced breakdown spectroscopy is designed and used to investigate the laser ablation and spectral intensity with an aluminum alloy sample.The laser crater morphologies and ablation volumes were measured.An inter-pulse time delay dependent ablation efficiency on a nanosecond laser-heated sample was observed,which was similar to the trend of spectral intensity versus inter-pulse time delay in the delay time less than 3μs.Based on the observation,the nanosecond pulse laser preheating effect on subsequent second laser ablation and signal enhancement is discussed,which will be helpful for understanding the ablation and signal enhancement mechanism in the standard collinear DP-LIBS technique.展开更多
The present paper is concerned with the study of two main points: clarifying the effect of preheating on the surface microscopic shape of coating layer by vacuum ion plasma coating technology and on the amount of micr...The present paper is concerned with the study of two main points: clarifying the effect of preheating on the surface microscopic shape of coating layer by vacuum ion plasma coating technology and on the amount of micro-hardness besides studying the properties of the surfaces that concern the parts of the mechanical system because of their direct and active effect on the machine efficient performance and machine life in general and their important effect on the product efficiency. As known, the instruments that measure the traditional roughness give us numbers and charts that, to a certain extent, describe the actual state of the surface shape within limited range of accuracy, but it has become necessary to find more accurate methods that suit the development obtained in industry, namely, the important applications like aircraft missiles and others. One of the suggested solutions for this is to get benefit of average fractal dimension for the surface by the help of the new technologies which, in return, help in the possibility to determine the surface state with high accuracy that matches the importance of application.展开更多
The compaison of the properties of coke of three coking methods is introduced. The mechanical properties and high temperature reactivity of coke bleding preheating modified Dongshen coal are improved obviously than th...The compaison of the properties of coke of three coking methods is introduced. The mechanical properties and high temperature reactivity of coke bleding preheating modified Dongshen coal are improved obviously than those of normal coke, and achieve or exceed that of stamping coke. This method shows more ability of expending coking coal resources.展开更多
The method of numerical simulation was applied to investigate gas preheating and start-up process in a drained aluminum reduction cell. The transient temperature and velocity fields of a 156 kA drained aluminum reduct...The method of numerical simulation was applied to investigate gas preheating and start-up process in a drained aluminum reduction cell. The transient temperature and velocity fields of a 156 kA drained aluminum reduction cell were numerically calculated. The results show that the method of gas preheating and bake-out can basically meet the technical requirements of the start-up process for the drained cell. If the same distributing scheme of gas nozzle as that in the general cells is used, there are problems of great temperature gradients and low temperature zone at the top of cathode near the side of nozzles. In order to promote the effect of gas preheating and baking the drained cell, the jetting angle of end nozzle is adjusted and the temperature distribution in the drained cell is obviously improved. By means of simulating the temperature field in the case that jetting angle varies from 0? to 30?, it is concluded that better temperature distribution can be obtained if the jetting angle of end nozzle is approximately 15?.展开更多
The flow field in a cold model of 2500 t/d five-stage cyclone preheater and precalciner system was numerically simulated. Renault stress model (RSM) turbulent model was adopted to simulate the flow field, and a hybrid...The flow field in a cold model of 2500 t/d five-stage cyclone preheater and precalciner system was numerically simulated. Renault stress model (RSM) turbulent model was adopted to simulate the flow field, and a hybrid mesh scheme was selected to generate calculation mesh. With the first order upwind difference, finite-volume method was used to convert turbulent equations into difference equations pressure-velocity coupling which were solved by the classic simple algorithm, and during the course of numerical solution, mesh self-adapting technology was applied. The main flow field structures of the whole system and each part of the cold model were studied by analyzing the simulation results.展开更多
The effects of preheat treatments on the microstructures and mechanical properties of tungsten inert gas (TIG)-welded AZ61 magnesium alloy joints were studied by microstructural observations, microhardness tests and...The effects of preheat treatments on the microstructures and mechanical properties of tungsten inert gas (TIG)-welded AZ61 magnesium alloy joints were studied by microstructural observations, microhardness tests and tensile tests. The results showed that the vol- ume fraction of the lamellar β-Mg17(Al,Zn)12 intermetallic compound of in fusion zone (FZ) increased from 15% to 66% with an increase in preheat temperature. Moreover, the microhardness of the FZ and the ultimate tensile strength of the welded joints reached their maximum values when the preheat temperature was 300℃ because more lamellar β-Mg17(Al,Zn)12 intermetallic compounds were distributed at the α-Mg grain boundaries and no cracks and pores formed in the FZ of the welded joint.展开更多
文摘Innovatively addressing the challenge of difficult winter starts for vehicles in northern regions,this study has developed a Thermally Controlled Preheating Engine Activation System.This system ingeniously integrates a thermal insulation kettle,an efficient water pump,precision valves,and temperature sensors,all closely linked with the engine’s coolant circulation system.In cold environments,the system automatically initiates a preheating mechanism by circulating and heating the coolant,significantly enhancing engine startup efficiency and reducing wear caused by cold starts.The anticipated outcome of this research is to substantially improve the operational reliability of vehicles in cold climates,extend their lifespan,promote energy conservation and emissions reduction,and drive the automotive industry towards greener,more efficient,and intelligent technologies,thus laying a solid foundation for industry upgrades and transformation.
基金supported by the National High-Tech Research and Development Program of China (No.2007AA05Z215)
文摘A mathematical model of drying and preheating processes in a traveling grate was presented based on the laws of mass, momen- tum, heat transfer, and drying semiempirical relations. A field test was systematically carried out in a traveling grate. The effects of pellet diameter, moisture, grate velocity, and inlet gas temperature on the pellet bed temperature were studied. The average relative error between actual measurements and simulations is less than 7.97%, indicating the validity of the model.
文摘In order to improve the cold start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self ignite at the end of compression process at different temperatures of coolant and intake air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro controller unit (MCS 8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.
文摘Friction stir welding (FSW) is applied extensively in industry for joining of nonferrous metals especially aluminum. A three-dimensional model based on finite element analysis was used to study the thermal characteristic of copper C I 1000 during the FSW process. The model incorporates the mechanical reaction of the tool and thermo-mechanieal characteristics of the weld material, while the friction between the material and the probe and the shoulder serves as the heat source. It was observed that the predicted results about the temperature were in good compatibility with the experimental results. Additionally, it was concluded that the numerical method can be simply applied to measuring the temperature of workpiece just beneath the tool. The effects of preheating temperature and pin angle on temperature distribution were also studied numerically. The increase of pin angle enhances the temperature around the weld line, but preheating does not affect temperature distribution along the weld line considerably.
文摘Compound casting is an efficient method for bonding dissimilar metals,in which a dramatic reaction can occur between the melt and solid.The centrifugal casting process,a type of compound casting,was applied to cast Al/Mg dissimilar bimetals.Magnesium melt was poured at 700 °C,with melt-to-solid volume ratios(Vm/Vs) of 1.5 and 3,into a preheated hollow aluminum cylinder.The preheating temperatures of the solid part were 320,400,and 450 °C,and the constant rotational speed was 1,600 rpm.The cast parts were kept inside the casting machine until reaching the cooling temperature of 150 °C.The result showed that an increase in preheating temperature from 320 to 450 °C led to an enhanced reaction layer thickness.In addition,an increase in the Vm/Vs from 1.5 to 3 resulted in raising the interface thickness from 1.2 to 1.8 mm.Moreover,the interface was not continuously formed when a Vm/Vs of 3 was selected.In this case,the force of contraction overcame the resultant acting force on the interface.An interface formed at the volume ratio of 1.5 was examined using scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectroscopy(EDS),and the results demonstrated the formation of Al_(3)Mg_(2),Al_(12)Mg_(17) and(δ+Al_(12)Mg_(17)) eutectic structures in the interface.
基金the financial support received from Science and Engineering Research Board (SERB) of DST, New Delhi, India, for the present work (project number: YSS/2015/000085)
文摘The present work investigated the effects of pin profiles(cylindrical and square),pin eccentricity(0.5 mm and 1 mm)in cylindrical tool and preheating(secondary heating)on metallurgical behavior,variation of vibro-acoustic signal pattern and joint strength during friction stir welding(FSW)between AA6061-T6 and AA7075-T651 alloys.The eccentric tool pins were observed to provide good flowability and intermixing between dissimilar metals,increased the size of stir zone,and the grains in stir zone were sufficiently finer with eccentric tool pin than concentric pin.The magnitude of vibro-acoustic signal increased when shoulder plunging started and drop in signal was noted when the tool shoulder reached its desired depth.The signal magnitude was noted to be higher in welding stage compared to tool plunging stage as the tool took in fresh material during tool movement along the weld path.Preheating the workpiece prior to pin plunging and during welding notably influenced the flow behavior and mixing pattern,and the grains in stir zone were slightly coarser than those in specimen without preheating.Significant reduction in the magnitude of the signal was also observed after preheating.Tensile and flexural strength of joints were also improved slightly when additional heating was employed.
文摘The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 300℃, 350℃ and 400℃?before gas metal arc filling to simulate defects repair. Another sample, welded at room temperature (RT) with no preheat, was studied in comparison. The parent rail steel has ultimate strength, yield strength and strain to failure of 1146 MPa, 717 MPa and 9.3%, respectively. Optimum values of these properties for the welded rail steels were found to be 1023 MPa, 655 MPa and 4.7%, respectively, for the 200℃ preheat temperature. On this basis, the optimum weld efficiency was found to be 89.2%. The average apparent fracture toughness KI for the parent rail was 127 MPa.m0.5, while that for the optimum welded joint (200℃ preheat) was 116.5 MPa.m0.5. In addition, the average hardness values of the weld, fusion zone, and heat affected zone (HAZ) were 313.5, 332 and 313.6 HB, respectively, while that for parent rail steel was about 360 HB. Dominance of bainite and acicular ferrite phase in the weld microstructure was observed at 200℃ preheat.
基金the National Key R&D Program(2018YFB1105200)111 Project(B17026)Open Fund of State Key Laboratory of Advanced Forming Technology and Equipment(SKL2019006)。
文摘Electron beam selective melting(EBM)and selective laser melting(SLM)are regarded as significant manufacturing processes for near-net-shaped Ti6Al4V components.Generally,in the conventional EBM process,preheating is necessitated to avoid"smoke"caused by the charging of electrons.In the conventional SLM process,laser as an energy source without the risk of"smoke"can be employed to melt metal powder at low temperatures.However,because of the low absorption rate of laser,the powder bed temperature cannot reach a high level.It is difficult to obtain as-built TiAl4V with favorable comprehensive properties via conventional EBM or SLM.Hence,two types of electron beam and laser hybrid preheating(EB-LHP)combined with selective melting strategies are proposed.Using laser to preheat powder allows EBM to be performed at a low powder bed temperature(EBM-LT),whereas using an electron beam to preheat powder allows SLM to be performed at a high powder bed temperature(SLM-HT).Ti6Al4V samples are fabricated using two different manufacturing strategies(i.e.,EBM-LT and SLM-HT)and two conventional processes,i.e.,EBM at a high powder bed temperature(EBM-HT)and SLM at a low powder bed temperature(SLM-LT).The temperature-dependent surface quality,microstructure,density,and mechanical properties of the as-built Ti6Al4V samples are characterized and compared.Results show that EBM-LT Ti6Al4V exhibits a higher ultimate tensile strength(981±43 MPa)and a lower elongation(12.2%±2.3%)than EBM-HT Ti6Al4V owing to the presence ofα′martensite.The SLM-HT Ti6Al4V possesses the highest ultimate tensile strength(1,059±62 MPa)and an elongation(14.8%±4.0%)comparable to that of the EBM-HT Ti6Al4V(16.6%±1.2%).
文摘The influence of equal channel angular extrusion preheating on the microstructure of NiTi was examined. Temperatures under non-isothermal condition is 750, 850 and 950 ℃, and ram speed was 25 mm·s^(-1). The micrographs showed that processing by each of the three temperatures via ECAE can refine the initial coarse grains of NiTi (as-received) after the first pass, and the developments of microstructure were quite different under different hot-working conditions. The influence of ECAE preheating (including temperature and time) on the microstructure of nickel-titanium was analyzed.
基金supported by National Natural Science Foundation of China(Nos.10935003,11275031,11075024,11074300 and 11274026)National Basic Research Program of China(No.2013CB834100)China Postdoctoral Science Foundation(Nos.2011M500181,2012T50018)
文摘In this research, the nonlinear evolution of jet-like spikes in the single-mode ablative Rayleigh-Taylor instability (ARTI) in the presence of preheating, is studied numerically. It is demonstrated that the preheating plays an essential role in the formation of jet-like spikes in the nonlinear ARTI. The evolution of jet-like spikes in the ARTI with preheating consists of three stages with distinctly different distinguishing features. In the early stage, the preheating contributes to significantly increase the density-gradient scale length and broaden the velocity profile of the ablation surface, where the former can reduce the linear growth of the ARTI and mitigate the growth of its harmonics. In the middle stage, the ablative Kelvin-Helmholtz instability is dramatically suppressed due to the ablation effects. In the late stage, the jet's length (i.e. bubble-spike amplitude) is further increased by the bubble acceleration in the highly nonlinear ARTI, resulting eventually in the formation of jet-like spikes.
文摘Selective laser sintering (SLS) is an important Rapid Prototyping method because its wide range of materials. The powder is fused and processed into a part because it is heated in the process. Preheating of powder on the surface of powder bed is a one important process which is a guarantee by which parts can be successfully fabricated and influences accuracy of parts fabricated in SLS technology. The uniformity of temperature on powder bed influences accuracy and performance of parts. It is necessary to understand the influences of the parameters of preheating set on uniformity of temperature on surface of powder bed. This paper analyzes general preheating process of irradiator for the preheating of powder on the surface of powder bed during SLS processing, and investigates influences of the flux density on the temperature field on the top surface of powder bed. The models of distribution of flux density and the distribution of surface temperature of powder bed are presented. The result predicted according to the models is reasonably consistent with experimental result. This model plays important role in design of preheating set and control of SLS processing. It is concluded that the uniformity of temperature field on the powder bed is determined mostly by the geometry of heating component and its fix location and the flux density is inverse proportional to the highness.
文摘In this paper, the influence of preheating on the layer microstructure and properties is analyzed in the layer metal microstructure. The influence of preheating temperature on the shape and amount of primary carbides and borides little, but on initial γ-dendrites is large. With the increasing of preheating temperature, little by little the γ-dendrites , which grown from parent material to layer, are flourishing to disappearing, and the microhardness at the center of the layer is increasing.
文摘The three dimensiotud transient weld pool dynamics are numerically analyzed ,for Forcearc welding, which is a new gas metal arc welding technology to get deep fusion penetration with smaller angle sf V groove to enhance welding efficiency significantly. The influence of groove angle and preheatin,g temperature on heat and .fluid .flow is studied and compared to get an optimal welding parameter. Good agreement is shown between the predicted and experimental results, such as weld bead cross-section and thermal cycles. It can he seen that an apprpriate groove angle could be used to replace high preheating temperature to get inproced penetration and thermal cycles.
文摘It is presented that a feasibility assessment of solar preheating of steam boiler feed water for opened vapor systems. Data from a medium sized dairy industry near Rio de Janeiro city, in Brazil, is used to compose a case study. Forty eight solar heating system computer simulations were carried out in TRNSYS (transient system simulation software), for a range of design parameters corresponding to the 5% best economic results of a series of 2,700 simpler simulations (φ,f-chart method), programmed on Matlab. It has been used TMY (typical meteorological year) hourly weather data from Rio de Janeiro. Investment cost was composed from both commercial and literature values, while revenue was based on the avoided consumption of fuel for LPG (liquefied petroleum gas), natural gas and fuel oil, with only the first showing economically feasible. The results, however, made it possible to address environmentally sound public policies to encourage industrial solar energy use.
基金supported by National Natural Science Foundation of China(No.61975186).
文摘Focus-offset collinear dual-pulse laser-induced breakdown spectroscopy is designed and used to investigate the laser ablation and spectral intensity with an aluminum alloy sample.The laser crater morphologies and ablation volumes were measured.An inter-pulse time delay dependent ablation efficiency on a nanosecond laser-heated sample was observed,which was similar to the trend of spectral intensity versus inter-pulse time delay in the delay time less than 3μs.Based on the observation,the nanosecond pulse laser preheating effect on subsequent second laser ablation and signal enhancement is discussed,which will be helpful for understanding the ablation and signal enhancement mechanism in the standard collinear DP-LIBS technique.
文摘The present paper is concerned with the study of two main points: clarifying the effect of preheating on the surface microscopic shape of coating layer by vacuum ion plasma coating technology and on the amount of micro-hardness besides studying the properties of the surfaces that concern the parts of the mechanical system because of their direct and active effect on the machine efficient performance and machine life in general and their important effect on the product efficiency. As known, the instruments that measure the traditional roughness give us numbers and charts that, to a certain extent, describe the actual state of the surface shape within limited range of accuracy, but it has become necessary to find more accurate methods that suit the development obtained in industry, namely, the important applications like aircraft missiles and others. One of the suggested solutions for this is to get benefit of average fractal dimension for the surface by the help of the new technologies which, in return, help in the possibility to determine the surface state with high accuracy that matches the importance of application.
文摘The compaison of the properties of coke of three coking methods is introduced. The mechanical properties and high temperature reactivity of coke bleding preheating modified Dongshen coal are improved obviously than those of normal coke, and achieve or exceed that of stamping coke. This method shows more ability of expending coking coal resources.
基金Project(G1999064903) supported by the National Basic Research Program of China
文摘The method of numerical simulation was applied to investigate gas preheating and start-up process in a drained aluminum reduction cell. The transient temperature and velocity fields of a 156 kA drained aluminum reduction cell were numerically calculated. The results show that the method of gas preheating and bake-out can basically meet the technical requirements of the start-up process for the drained cell. If the same distributing scheme of gas nozzle as that in the general cells is used, there are problems of great temperature gradients and low temperature zone at the top of cathode near the side of nozzles. In order to promote the effect of gas preheating and baking the drained cell, the jetting angle of end nozzle is adjusted and the temperature distribution in the drained cell is obviously improved. By means of simulating the temperature field in the case that jetting angle varies from 0? to 30?, it is concluded that better temperature distribution can be obtained if the jetting angle of end nozzle is approximately 15?.
文摘The flow field in a cold model of 2500 t/d five-stage cyclone preheater and precalciner system was numerically simulated. Renault stress model (RSM) turbulent model was adopted to simulate the flow field, and a hybrid mesh scheme was selected to generate calculation mesh. With the first order upwind difference, finite-volume method was used to convert turbulent equations into difference equations pressure-velocity coupling which were solved by the classic simple algorithm, and during the course of numerical solution, mesh self-adapting technology was applied. The main flow field structures of the whole system and each part of the cold model were studied by analyzing the simulation results.
基金supported by the Key Scientific and Technological Project of Chongqing (No.CSTC, 2009AC4046)Natural Science Foundation Project of CQ CSTC (No. CSTC, 2010BB4039) Fundamental Research Funds for the Central Universities of China (Nos.CDJZR10130010 and CDJXS10131155)
文摘The effects of preheat treatments on the microstructures and mechanical properties of tungsten inert gas (TIG)-welded AZ61 magnesium alloy joints were studied by microstructural observations, microhardness tests and tensile tests. The results showed that the vol- ume fraction of the lamellar β-Mg17(Al,Zn)12 intermetallic compound of in fusion zone (FZ) increased from 15% to 66% with an increase in preheat temperature. Moreover, the microhardness of the FZ and the ultimate tensile strength of the welded joints reached their maximum values when the preheat temperature was 300℃ because more lamellar β-Mg17(Al,Zn)12 intermetallic compounds were distributed at the α-Mg grain boundaries and no cracks and pores formed in the FZ of the welded joint.