The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classificatio...The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classification,it remains hindered by the lack of labelled dataset.In this article,we introduce a novel method for generating literature classification models through semi-supervised learning,which can generate labelled dataset iteratively with limited human input.We apply this method to train NLP models for classifying literatures related to several research directions,i.e.,battery,superconductor,topological material,and artificial intelligence(AI)in materials science.The trained NLP‘battery’model applied on a larger dataset different from the training and testing dataset can achieve F1 score of 0.738,which indicates the accuracy and reliability of this scheme.Furthermore,our approach demonstrates that even with insufficient data,the not-well-trained model in the first few cycles can identify the relationships among different research fields and facilitate the discovery and understanding of interdisciplinary directions.展开更多
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and char...La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.展开更多
Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Labor...Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.展开更多
The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as m...The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as mitigating the power crisis,minimizing water pollution,and improving the purification and desalination of seawater,rivers/lakes,and wastewater.Cellulosic materials are a viable and ecologically sound technique for capturing solar energy that is adaptable to a range of applications.This review paper aims to provide an overview of current advancements in the field of cellulose-based materials ISSG devices,specifically focusing on their applications in water purification and desalination.This paper examines the cellulose-based materials ISSG system and evaluates the effectiveness of various cellulosic materials,such as cellulose nanofibers derived from different sources,carbonized wood materials,and two-dimensional(2D)and 3D cellulosic-based materials from various sources,as well as advanced cellulosic materials,including bacterial cellulose and cellulose membranes obtained from agricultural and industrial cellulose wastes.The focus is on exploring the potential applications of these materials in ISSG devices for water desalination,purification,and treatment.The function,advantages,and disadvantages of cellulosic materials in the performance of ISSG devices were also deliberated throughout our discussion.In addition,the potential and suggested methods for enhancing the utilization of cellulose-based materials in the field of ISSG systems for water desalination,purification,and treatment were also emphasized.展开更多
As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal sha...As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal shape, was manufactured using minute metal scraps.Similarly, a design material with an intended color pattern for each metal, such as red copper in a white aluminum matrix, resembling grainlike wood, was manufactured by mixing two or more types of minute metal scrap.In addition, secondary design materials, which have engraved patterns on the surface of the target metal made by an electric discharge machine using the above primary design material as an electrode, were manufactured.展开更多
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co...Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.展开更多
In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coul...In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established.展开更多
In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing ...In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.展开更多
The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfull...The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfully processed 6 samples of materials,including 3 samples of alloys,2 of semiconductors and 1 sample of oxide crystal.展开更多
Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool...Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints.展开更多
The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last year...The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last years are also pointed out.展开更多
The First Pacific Rim International Confer-ence on Advanced Materials and Processing(PRICM-1)organized by The Chinese Society ofMetals(CSM),and co-sponsored by the Japan In-stitute of Metals(JIM),the Korean Institute ...The First Pacific Rim International Confer-ence on Advanced Materials and Processing(PRICM-1)organized by The Chinese Society ofMetals(CSM),and co-sponsored by the Japan In-stitute of Metals(JIM),the Korean Institute ofMetals(KIM)and The Mineral,Metals & Materi-als Society of the United States(TMS),was held inShangri-La Hotel,Hangzhou,China on June24-27,1992.It was the first large international conference展开更多
Author researches a lot of the mathematical models and the related conventional material constants in the traditional and the modem mechanics; to adopt two types of variables a and D, for the fatigue-damage-fracture b...Author researches a lot of the mathematical models and the related conventional material constants in the traditional and the modem mechanics; to adopt two types of variables a and D, for the fatigue-damage-fracture behaviors to elastic-plastic steels contained flaws, to put forward several calculation models, which are the driving force and the life prediction expressions at each stage and in whole process; for the key parameters .A1 and ,A2 in two stages, there are functional relation with other conventional material constants σF,m1 and M2,λ2, they are defined as the new calculable comprehensive material constants, and indicate their physical and geometrical meanings. In addition, for conversion methods between two types of variables, relevant calculating example is provided. Thereby, make a linking between the fracture mechanics and the damage mechanics, communicating their relationships. This works for saving man powers and funds on fatigue-damage-fracture testing that will be having practical significance.展开更多
In order to form the apatite nuclei on a surface of the substrate, the substrate was placed on or in CaO, SiO2-based glass particles which were soaked in a simulated body fluid with ion concentrations nearly e-qual to...In order to form the apatite nuclei on a surface of the substrate, the substrate was placed on or in CaO, SiO2-based glass particles which were soaked in a simulated body fluid with ion concentrations nearly e-qual to those of human blood plasma, and to make the apatite nuclei grow on the substrate in situ, the substrate, was soaked in another solution highly supersaturated with respect to the apatite. The induction period for the apatite nucleation varied from 0 to 4 days depending on the kind of the substrate. The thickness of the apatite layer increases linearly with increasing soaking time in the second solution. The rate of growth of the apatite layer increases with increasing degree of the supersaturation and temperature of the second solution, reaching 7um/d in a solution with ion concentrations which is as 1.5 times as those of the simulated body fluid at 60℃. The adhesive strength of the apatite layer to the substrate varies depending on the kind and roughness of the substrate. Polyethyleneterephthalate and polyethersulfone plates abraded with No. 400 diamond paste show adhesive strengths of as high as 4 MPa. This type of composite of the bone-like apatite with metals, ceramics and organic polymers might be useful not only as highly biaactive hard tissue-repairing materials with analogous mechanical properties to those of the hard tissues , but also as highly biocompatible soft tissue-repairing materials with ductility.展开更多
AC impedance is a new method to study the changes of pore structure and the hydration degree during the hydration and hardening process of cement paste by the change of the electrochemical parameters. Employing AC imp...AC impedance is a new method to study the changes of pore structure and the hydration degree during the hydration and hardening process of cement paste by the change of the electrochemical parameters. Employing AC impedance method, we studied the hydration and hardening process of cement paste with fly ash and slag, and analyzed the influence of different hydration age, water-binder ratio and mineral admixture on the impedance parameters. Moreover, we compared the results with those by the conventional porosity testing method and X-ray diffraction method. The results showed that AC impedance could be taken as a new technology in cement and concrete research.展开更多
A new concept named computational comminution is proposed in thispaper, which is different from the traditional studies on materialsprocessing procedure such as the study based on theoretic models, thestudy based on e...A new concept named computational comminution is proposed in thispaper, which is different from the traditional studies on materialsprocessing procedure such as the study based on theoretic models, thestudy based on experiment models, which is based on informationmodels. Some key technologies applied to mate- rials processingprocedure such as artificial neural networks, fuzzy sets, geneticalgorithms and visualization techn- ology are also presented, and afusing methodology of these new technologies is studied. Applicationin the cement grinding process of Horomill shows that results in thispaper are efficient.展开更多
Based on the continuum physics and taking into account variation of the heat dissipation, Helmholtz free ener-gy, internal energy and exothermicity with the thermodynamic process, in this paper, the functional equatio...Based on the continuum physics and taking into account variation of the heat dissipation, Helmholtz free ener-gy, internal energy and exothermicity with the thermodynamic process, in this paper, the functional equations of the general-ized stress and entropy associated ivith the time and temperature are derived for the irreversible process of thermoviscoelastic-plastic materials. As an example, the response functionals of Maxwell viscoelastic materials are obtained.展开更多
Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the cera...Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.展开更多
A new rare-earth magnet recycling process developed by researchers at the Critical Materials Institute (CMI) dissolves magnets in an acid-free solution and recovers high purity rare earth elements. For shredded magnet...A new rare-earth magnet recycling process developed by researchers at the Critical Materials Institute (CMI) dissolves magnets in an acid-free solution and recovers high purity rare earth elements. For shredded magnet-containing electronic wastes, the process does not require pre-processing such as pre-sorting or demagnetization of the electronic waste.展开更多
基金funded by the Informatization Plan of Chinese Academy of Sciences(Grant No.CASWX2021SF-0102)the National Key R&D Program of China(Grant Nos.2022YFA1603903,2022YFA1403800,and 2021YFA0718700)+1 种基金the National Natural Science Foundation of China(Grant Nos.11925408,11921004,and 12188101)the Chinese Academy of Sciences(Grant No.XDB33000000)。
文摘The exponential growth of literature is constraining researchers’access to comprehensive information in related fields.While natural language processing(NLP)may offer an effective solution to literature classification,it remains hindered by the lack of labelled dataset.In this article,we introduce a novel method for generating literature classification models through semi-supervised learning,which can generate labelled dataset iteratively with limited human input.We apply this method to train NLP models for classifying literatures related to several research directions,i.e.,battery,superconductor,topological material,and artificial intelligence(AI)in materials science.The trained NLP‘battery’model applied on a larger dataset different from the training and testing dataset can achieve F1 score of 0.738,which indicates the accuracy and reliability of this scheme.Furthermore,our approach demonstrates that even with insufficient data,the not-well-trained model in the first few cycles can identify the relationships among different research fields and facilitate the discovery and understanding of interdisciplinary directions.
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
基金Project supported by the National Natural Science Foundation of China (50204007)the Foundation of Yunnan Province (2005PY01-33)
文摘La1-xSrxGa1-y MgyO3-δ(LSGM) electrolyte, La1-xSrxCr1-y MnyO3-δ( LSCM ) anode and La1-xSrxFe1-y MnyO3-aaaaaaa(LSFM) cathode materials were all synthesized by glycine-nitrate process (GNP). The microstructure and characteristics of LSGM, LSCM and LSFM were tested via X-ray diffraction(XRD), scanning electron microcopy (SEM), A C impedance and four-probe direct current techniques. XRD shows that pure perovskite phase LSGM electrolyte and electrode (LSCM anode and LSFM cathode) materials were prepared after being sintered at 1400℃for 20 h and at 1000℃for 5 h, respectively. The max conductivities of LSGM (ionic conductivity), LSCM (total conductivity) and LSFM (total conductivity) materials are 0.02, 10, 16 S·cm-1 in the air below 850℃, respectively. The conductivity of LSCM becomes smaller when the atmosphere changes from air to pure hydrogen at the same temperature and it decreases with the temperature like metal. The porous and LSGM-based LSCM anode and LSFM cathode films were prepared by screen printing method, and the sintering temperatures for them were 1300 and 1250℃, respectively. LSGM and electrode (LSCM and LSFM) materials have good thermal and chemical compatibility.
基金Supported by the National Key Technologies R&D Program (2011BAE28B01) and the National Natural Science Foundation of China (21276016).
文摘Layered intercalated functional materials of layered double hydroxide type are an important class of functional materials developed in recent years. Based on long term studies on these materials in the State Key Laboratory of Chemical Resource Engineering in Beiiing University of Chemical Technology, the orinciole for the design of controlled intercalation processes in the light of tuture production processing requirements has been developed. Intercalation assembly methods and technologies have been invented to control the intercalation process for preparing layered intercalated materials with various structures and functions.
基金This study was supported by Key Research and Development Program of Hubei Province(No.2022ACA002).
文摘The world's population is growing,leading to an increasing demand for freshwater resources for drinking,sanitation,agriculture,and industry.Interfacial solar steam generation(ISSG)can solve many problems,such as mitigating the power crisis,minimizing water pollution,and improving the purification and desalination of seawater,rivers/lakes,and wastewater.Cellulosic materials are a viable and ecologically sound technique for capturing solar energy that is adaptable to a range of applications.This review paper aims to provide an overview of current advancements in the field of cellulose-based materials ISSG devices,specifically focusing on their applications in water purification and desalination.This paper examines the cellulose-based materials ISSG system and evaluates the effectiveness of various cellulosic materials,such as cellulose nanofibers derived from different sources,carbonized wood materials,and two-dimensional(2D)and 3D cellulosic-based materials from various sources,as well as advanced cellulosic materials,including bacterial cellulose and cellulose membranes obtained from agricultural and industrial cellulose wastes.The focus is on exploring the potential applications of these materials in ISSG devices for water desalination,purification,and treatment.The function,advantages,and disadvantages of cellulosic materials in the performance of ISSG devices were also deliberated throughout our discussion.In addition,the potential and suggested methods for enhancing the utilization of cellulose-based materials in the field of ISSG systems for water desalination,purification,and treatment were also emphasized.
文摘As a new attempt to recycle minute metal scraps, the possibility of manufacturing design materials by semisolid extrusion processing was shown.A design material with an intended shape, such as a character or petal shape, was manufactured using minute metal scraps.Similarly, a design material with an intended color pattern for each metal, such as red copper in a white aluminum matrix, resembling grainlike wood, was manufactured by mixing two or more types of minute metal scrap.In addition, secondary design materials, which have engraved patterns on the surface of the target metal made by an electric discharge machine using the above primary design material as an electrode, were manufactured.
基金financially supported by the Technology Development Fund of China Academy of Machinery Science and Technology(No.170221ZY01)。
文摘Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing.
文摘In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established.
基金financial support from the Government of the Perm Territory within the Framework of Scientific Project No.S-26/828the Ministry of Science and High Education of Russia(Theme No.121031700169-1).
文摘In the process of production or processing of materials by various methods,there is a need for a large volume of water of the required quality.Today in many regions of the world,there is an acute problem of providing industry with water of a required quality.Its solution is an urgent and difficult task.The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors,and is often significantly heterogeneous not only in the water area,but also in depth.As a rule,the water supply of large industrial enterprises is located along the river network.Mergers are the most important nodes of river systems.Understanding the mechanism of transport of pollutants at the confluence of rivers is critical for assessing water quality.In recent years,thanks to the data of satellite images,the interest of researchers in the phenomenon of mixing the waters of merging rivers has increased.The nature of the merger is influenced by the formation of transverse circulation.Within the framework of this work,a study of vorticity,as well as the width of the mixing zone,depending on the distance from the confluence,the speeds of the merging rivers and the angle of confluence was carried out.Since the consumer properties of water are largely determined by its chemical and physical indicators,the intensity of mixing,determined largely by the nature of the secondary circulation,is of fundamental importance for assessing the distribution of hydrochemical indicators of water quality in the mixing zone.These characteristics are important not only for organizing water intake for drinking and technical purposes with the best consumer properties,but also for organizing an effective monitoring system for confluence zones.
文摘The DGW-I is a new material processing facility developed in China,which was firstly carried into orbit in November 1999 by the SZ-1 spacecraft and then in January 2001 carried by SZ-2 into space again,and successfully processed 6 samples of materials,including 3 samples of alloys,2 of semiconductors and 1 sample of oxide crystal.
文摘Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints.
文摘The research achievements of solidification theories and technologies in the last decades are reviewed with the stresses on some new development in the recent years. Some new interesting areas emerged in the last years are also pointed out.
文摘The First Pacific Rim International Confer-ence on Advanced Materials and Processing(PRICM-1)organized by The Chinese Society ofMetals(CSM),and co-sponsored by the Japan In-stitute of Metals(JIM),the Korean Institute ofMetals(KIM)and The Mineral,Metals & Materi-als Society of the United States(TMS),was held inShangri-La Hotel,Hangzhou,China on June24-27,1992.It was the first large international conference
文摘Author researches a lot of the mathematical models and the related conventional material constants in the traditional and the modem mechanics; to adopt two types of variables a and D, for the fatigue-damage-fracture behaviors to elastic-plastic steels contained flaws, to put forward several calculation models, which are the driving force and the life prediction expressions at each stage and in whole process; for the key parameters .A1 and ,A2 in two stages, there are functional relation with other conventional material constants σF,m1 and M2,λ2, they are defined as the new calculable comprehensive material constants, and indicate their physical and geometrical meanings. In addition, for conversion methods between two types of variables, relevant calculating example is provided. Thereby, make a linking between the fracture mechanics and the damage mechanics, communicating their relationships. This works for saving man powers and funds on fatigue-damage-fracture testing that will be having practical significance.
文摘In order to form the apatite nuclei on a surface of the substrate, the substrate was placed on or in CaO, SiO2-based glass particles which were soaked in a simulated body fluid with ion concentrations nearly e-qual to those of human blood plasma, and to make the apatite nuclei grow on the substrate in situ, the substrate, was soaked in another solution highly supersaturated with respect to the apatite. The induction period for the apatite nucleation varied from 0 to 4 days depending on the kind of the substrate. The thickness of the apatite layer increases linearly with increasing soaking time in the second solution. The rate of growth of the apatite layer increases with increasing degree of the supersaturation and temperature of the second solution, reaching 7um/d in a solution with ion concentrations which is as 1.5 times as those of the simulated body fluid at 60℃. The adhesive strength of the apatite layer to the substrate varies depending on the kind and roughness of the substrate. Polyethyleneterephthalate and polyethersulfone plates abraded with No. 400 diamond paste show adhesive strengths of as high as 4 MPa. This type of composite of the bone-like apatite with metals, ceramics and organic polymers might be useful not only as highly biaactive hard tissue-repairing materials with analogous mechanical properties to those of the hard tissues , but also as highly biocompatible soft tissue-repairing materials with ductility.
基金Funded the Major Sate Basic Research Development Program of China(973 Program)(No.2009CB23201)Beijing Natural Science Foundation(No.8100001)National Natural Science Foundation of China(No.51278014)
文摘AC impedance is a new method to study the changes of pore structure and the hydration degree during the hydration and hardening process of cement paste by the change of the electrochemical parameters. Employing AC impedance method, we studied the hydration and hardening process of cement paste with fly ash and slag, and analyzed the influence of different hydration age, water-binder ratio and mineral admixture on the impedance parameters. Moreover, we compared the results with those by the conventional porosity testing method and X-ray diffraction method. The results showed that AC impedance could be taken as a new technology in cement and concrete research.
文摘A new concept named computational comminution is proposed in thispaper, which is different from the traditional studies on materialsprocessing procedure such as the study based on theoretic models, thestudy based on experiment models, which is based on informationmodels. Some key technologies applied to mate- rials processingprocedure such as artificial neural networks, fuzzy sets, geneticalgorithms and visualization techn- ology are also presented, and afusing methodology of these new technologies is studied. Applicationin the cement grinding process of Horomill shows that results in thispaper are efficient.
文摘Based on the continuum physics and taking into account variation of the heat dissipation, Helmholtz free ener-gy, internal energy and exothermicity with the thermodynamic process, in this paper, the functional equations of the general-ized stress and entropy associated ivith the time and temperature are derived for the irreversible process of thermoviscoelastic-plastic materials. As an example, the response functionals of Maxwell viscoelastic materials are obtained.
基金Project supported by National Natural Science Foundation of China (50405047)Natural Science foundation of Shandong Province (Y2005F04)Jinan Young Star Plan of Science and Technology (08108)
文摘Development and application of new ceramic die materials is one of the important topics in the field of die research. The composition, processing technology, mechanical property and engineering performance of the ceramic materials such as cermet, ZTA, TZP, TZP/Al2O3, TZP/TiC/Al2O3, PSZ and Sialon, etc., with rare earth yttrium, lanthanum and cerium, and so on working as additives, were investigated and analyzed in the present study. Problems existed in the research and application of rare earth ceramic die materials were discussed. Rare earth additives can effectively improve the mechanical property and engineering performance of ceramic die materials. Thus, it will have further perspectives of wider application. More attention should be paid in the future to the toughening and strengthening of the ceramic die materials, the adding forms and kinds of rare earth elements and acting mechanisms of rare earth additives in ceramic die materials.
文摘A new rare-earth magnet recycling process developed by researchers at the Critical Materials Institute (CMI) dissolves magnets in an acid-free solution and recovers high purity rare earth elements. For shredded magnet-containing electronic wastes, the process does not require pre-processing such as pre-sorting or demagnetization of the electronic waste.