Due to the high expense of deep oil and gas exploration,prediction of gas-bearing properties before drilling is crucial for deep gas reservoir of tight sandstone.Deep tight sandstone gas fields in Kuqa Foreland Basin ...Due to the high expense of deep oil and gas exploration,prediction of gas-bearing properties before drilling is crucial for deep gas reservoir of tight sandstone.Deep tight sandstone gas fields in Kuqa Foreland Basin are characterized by high abundance,high gas saturation,high pressure,high and stable yield,which belong to high-efficiency tight gas reservoir.Based on theoretical analysis of controlling factors and mechanisms of gas-bearing properties for tight sandstone gas reservoir,and taking tight sandstone gas fields with high effectiveness such as Dibei,Keshen and Dibei gas fields in Kuqa Foreland Basin as examples,formation condition and mechanism of high-efficiency tight sandstone gas reservoir in Kuqa area are studied through a comparative analysis of typical tight sandstone gas reservoir in Sichuan Basin and Ordos Basin.The results show that the formation condition of deep gas reservoir of tight sandstone in Kuqa foreland basin includes four factors:i.e.,overpressure gas charging,fracture development,“early-oil and late-gas”accumulation process and favorable preservation condition.The overpressure gas charging and fracture development are the most important factors for formation of high-efficiency tight gas reservoirs in Kuqa Foreland Basin.High-quality source rocks,high sourcereservoir pressure difference,and overpressure filling induced thereby are preconditions for formation of tight sandstone with high gas saturation.The fracture development controls gas migration,accumulation,and high yield of tight sandstone gas reservoir.The reservoir wettability changed by the early oil charging is beneficial to late natural gas charging,and the preservation condition of high-quality gypsum cap rocks is the key factor for gas reservoirs to maintain overpressure and high gas saturation.Matching of above four favorable factors leads to the tight sandstone gas reservoir with high abundance,high gas saturation and high gas production in Kuqa Foreland Basin,which is very different from other basins.Under the condition of little difference in physical property of tight sandstone reservoir,excessive source-reservoir pressure difference,facture development,preservation condition and current formation overpressure are the most significant factors to be considered in exploration and evaluation of deep tight sandstone gas.展开更多
The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have...The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have provided abundant data for analyzing formation conditions of this super-large oilfield.On the basis of the exploration and development history,fundamental reservoir features,and with available geological,geophysical and test data,the hydrocarbon accumulation conditions and key exploration&development technologies of the PL 19e3 Oilfield were discussed.The key conditions for forming the super-large Neogene oilfield include four aspects.Firstly,the oilfield is located at the high position of the uplift that contacts the brachy-axis of the multi-ridge slope in the biggest hydrocarbon-rich sag in the Bohai Bay Basin,thus it has sufficient hydrocarbon source and extremely superior hydrocarbon migration condition.Secondly,the large-scale torsional anticlines which formed in the Neogene under the control of the Tanlu strike-slipping movement provide sufficient storage spaces for oil and gas preservation.Thirdly,the“multiple sets of composite reservoir-caprock assemblages”developing in the special shallow-water delta further contributes greatly to the effective storage space for oil and gas preservation.Fourthly,due to the coupling of the uplift and strike slip in the neotectonic period,extensive faulting activities constantly released the pressure while the late period massive hydrocarbon expulsion of the Bozhong took place at the same time,which assures the constant and intense charging of oil and gas.The super-large PL 19e3 Oilfield was controlled by the coupling effects of all those special geologic factors.In view of this oilfield's features(e.g.violently reformation caused by strike slip,and the special sedimentary environment of shallow-water delta),some key practical technologies for exploration and development have been developed.Such technologies include:the special prestack depth migration processing for gas cloud zones,the prediction of thin interbed reservoirs based on high-precision inversion of geologic model,the reservoir description for the shallow-water braided river delta,the quantitative description for remaining oil in the commingled oil reservoirs with wide well spacing and long well interval,and the well pattern adjustment for formations during high water cut period in the complex fluvial-facies oilfields.展开更多
Many scholars carried out large quantity of researches on oil and gas preservative condi-tions of marine carbonate rocks from the aspects of cap rocks,faults,formation water,hydrodynamic,and tectonism.This article giv...Many scholars carried out large quantity of researches on oil and gas preservative condi-tions of marine carbonate rocks from the aspects of cap rocks,faults,formation water,hydrodynamic,and tectonism.This article gives dynamic evaluation on oil and gas preservative conditions of marine stratum in Jianghan(江汉) plain of multiphase tectonic disturbance from the view of paleofluid geo-chemistry.The conclusion shows that there mainly existed fluid filling of two periods in the reservoir of Lower-Middle Triassic to Permian.The fluid filled in the earlier period came from Lower Palaeozoic.The interchange of fluid in Lower-Middle Triassic to Permian suggested the oil and gas in Lower Pa-laeozoic had been broken up.The fluid filled in the later period(Lower-Middle Triassic to Permian) came from the same or adjacent strata and lacked anatectic fluidogenous features coming from Palaeozoic.With good preservative conditions of bulk fluid at the time,the fluid of Lower-Middle Triassic to Permian and that of Lower Palaeozoic did not connect with each other.However,the hydrocarbon generation peak of marine source rocks had passed or the paleo-oil and gas reser-voirs had been destroyed at that time and the marine stratum of Palaeozoic to Triassic in the research area did not put out commercial oil and gas flow.展开更多
基金The work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05003-002)the Scientific Research and Technology Development Project of PetroChina(No.2016B-0502).
文摘Due to the high expense of deep oil and gas exploration,prediction of gas-bearing properties before drilling is crucial for deep gas reservoir of tight sandstone.Deep tight sandstone gas fields in Kuqa Foreland Basin are characterized by high abundance,high gas saturation,high pressure,high and stable yield,which belong to high-efficiency tight gas reservoir.Based on theoretical analysis of controlling factors and mechanisms of gas-bearing properties for tight sandstone gas reservoir,and taking tight sandstone gas fields with high effectiveness such as Dibei,Keshen and Dibei gas fields in Kuqa Foreland Basin as examples,formation condition and mechanism of high-efficiency tight sandstone gas reservoir in Kuqa area are studied through a comparative analysis of typical tight sandstone gas reservoir in Sichuan Basin and Ordos Basin.The results show that the formation condition of deep gas reservoir of tight sandstone in Kuqa foreland basin includes four factors:i.e.,overpressure gas charging,fracture development,“early-oil and late-gas”accumulation process and favorable preservation condition.The overpressure gas charging and fracture development are the most important factors for formation of high-efficiency tight gas reservoirs in Kuqa Foreland Basin.High-quality source rocks,high sourcereservoir pressure difference,and overpressure filling induced thereby are preconditions for formation of tight sandstone with high gas saturation.The fracture development controls gas migration,accumulation,and high yield of tight sandstone gas reservoir.The reservoir wettability changed by the early oil charging is beneficial to late natural gas charging,and the preservation condition of high-quality gypsum cap rocks is the key factor for gas reservoirs to maintain overpressure and high gas saturation.Matching of above four favorable factors leads to the tight sandstone gas reservoir with high abundance,high gas saturation and high gas production in Kuqa Foreland Basin,which is very different from other basins.Under the condition of little difference in physical property of tight sandstone reservoir,excessive source-reservoir pressure difference,facture development,preservation condition and current formation overpressure are the most significant factors to be considered in exploration and evaluation of deep tight sandstone gas.
基金The work was supported by the National Science and Technology Major Project of China(No.2016ZX05024-003).
文摘The PL 19e3 Oilfield is the only super-large monolithic oilfield with oil and gas reserves up to 1×10^(9) t in the Bohai Bay Basin,and it has been successfully developed.Exploration and development practices have provided abundant data for analyzing formation conditions of this super-large oilfield.On the basis of the exploration and development history,fundamental reservoir features,and with available geological,geophysical and test data,the hydrocarbon accumulation conditions and key exploration&development technologies of the PL 19e3 Oilfield were discussed.The key conditions for forming the super-large Neogene oilfield include four aspects.Firstly,the oilfield is located at the high position of the uplift that contacts the brachy-axis of the multi-ridge slope in the biggest hydrocarbon-rich sag in the Bohai Bay Basin,thus it has sufficient hydrocarbon source and extremely superior hydrocarbon migration condition.Secondly,the large-scale torsional anticlines which formed in the Neogene under the control of the Tanlu strike-slipping movement provide sufficient storage spaces for oil and gas preservation.Thirdly,the“multiple sets of composite reservoir-caprock assemblages”developing in the special shallow-water delta further contributes greatly to the effective storage space for oil and gas preservation.Fourthly,due to the coupling of the uplift and strike slip in the neotectonic period,extensive faulting activities constantly released the pressure while the late period massive hydrocarbon expulsion of the Bozhong took place at the same time,which assures the constant and intense charging of oil and gas.The super-large PL 19e3 Oilfield was controlled by the coupling effects of all those special geologic factors.In view of this oilfield's features(e.g.violently reformation caused by strike slip,and the special sedimentary environment of shallow-water delta),some key practical technologies for exploration and development have been developed.Such technologies include:the special prestack depth migration processing for gas cloud zones,the prediction of thin interbed reservoirs based on high-precision inversion of geologic model,the reservoir description for the shallow-water braided river delta,the quantitative description for remaining oil in the commingled oil reservoirs with wide well spacing and long well interval,and the well pattern adjustment for formations during high water cut period in the complex fluvial-facies oilfields.
基金supported by the Major Project of Chinese National Programs for Fundamental Research and Development 973 Program (No. 2012CB214805)
文摘Many scholars carried out large quantity of researches on oil and gas preservative condi-tions of marine carbonate rocks from the aspects of cap rocks,faults,formation water,hydrodynamic,and tectonism.This article gives dynamic evaluation on oil and gas preservative conditions of marine stratum in Jianghan(江汉) plain of multiphase tectonic disturbance from the view of paleofluid geo-chemistry.The conclusion shows that there mainly existed fluid filling of two periods in the reservoir of Lower-Middle Triassic to Permian.The fluid filled in the earlier period came from Lower Palaeozoic.The interchange of fluid in Lower-Middle Triassic to Permian suggested the oil and gas in Lower Pa-laeozoic had been broken up.The fluid filled in the later period(Lower-Middle Triassic to Permian) came from the same or adjacent strata and lacked anatectic fluidogenous features coming from Palaeozoic.With good preservative conditions of bulk fluid at the time,the fluid of Lower-Middle Triassic to Permian and that of Lower Palaeozoic did not connect with each other.However,the hydrocarbon generation peak of marine source rocks had passed or the paleo-oil and gas reser-voirs had been destroyed at that time and the marine stratum of Palaeozoic to Triassic in the research area did not put out commercial oil and gas flow.