Larger and larger proportions of aluminium castings,especially those produced by the die casting process,can be observed during recent years in the automotive industry,house-hold articles and others.In case of the aut...Larger and larger proportions of aluminium castings,especially those produced by the die casting process,can be observed during recent years in the automotive industry,house-hold articles and others.In case of the automotive industry,apart from the traditional elements produced by the die pressure method such as engine blocks or crank shaft bedplates,aluminium is displacing steel from structural parts of cars('body in white').The current state and development directions of the structural solutions of cold-chamber die castings are analysed in this paper.These solutions drive the prospective development of these machines and die casting technology.The focus is mainly on essential functional systems such as:hydraulic drives of closing and locking units,as well as pressing in die machines of known companies present on the European market.展开更多
The copper disc casting machine is core equipment for producing copper anode plates in the copper metallurgy industry.The copper disc casting machine casting package motion curve(CPMC) is significant for precise casti...The copper disc casting machine is core equipment for producing copper anode plates in the copper metallurgy industry.The copper disc casting machine casting package motion curve(CPMC) is significant for precise casting and efficient production.However,the lack of exact casting modeling and real-time simulation information severely restricts dynamic CPMC optimization.To this end,a liquid copper droplet model describes the casting package copper flow pattern in the casting process.Furthermore,a CPMC optimization model is proposed for the first time.On top of this,a digital twin dual closed-loop self-optimization application framework(DT-DCS) is constructed for optimizing the copper disc casting process to achieve self-optimization of the CPMC and closed-loop feedback of manufacturing information during the casting process.Finally,a case study is carried out based on the proposed methods in the industrial field.展开更多
A computer control system for drawing machine in horizontal continuous cast set was introduced.The operation features of the drawing machine were analyzed»the hardware configuration and principles of interface ci...A computer control system for drawing machine in horizontal continuous cast set was introduced.The operation features of the drawing machine were analyzed»the hardware configuration and principles of interface circuit for stroke measurements were given out.An effective method was provided,which made the process parameters progressively optimize under the software environment using friendly interface of person-and-computer communication.This method was also adaptable to optimize parameters of other production process which are hard to model.展开更多
Gray cast irons were inoculated with FeSi75+RE and FeSi75+Sr inoculants. The changes of apex angle of the drills before and after being used were used to evaluate machinability of gray cast irons. Effect of FeSi75+...Gray cast irons were inoculated with FeSi75+RE and FeSi75+Sr inoculants. The changes of apex angle of the drills before and after being used were used to evaluate machinability of gray cast irons. Effect of FeSi75+RE and FeSi75+Sr inoculants on mechanical properties, machinability and sensibility of gray cast iron used in cylinder block were investigated. Experimental results showed that gray cast iron treated with 60%FeSi75+40% RE inoculants exhibited tensile strength consistently at about 295 MPa along with good hardness and improved metallurgical quality. While gray cast iron inoculated with 20%FeSi75+80% Sr inoculants exhibited the best machinability, the lowest cross-section sensibility and the least microhardness difference. The tool flank wear of the drill increased correspondingly with the increase of the microhardness difference of the matrix, indicating the great effect of homogeneity of the matrix on the machinability of gray cast iron.展开更多
Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties. Howeve...Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties. However,manufacturing of thin-walled aluminum die-casting components,less than 1.0 mm in thickness,is generally known to be very difficult task to achieve aluminum casting alloys with high fluidity.Therefore,in this study,the optimal die-casting conditions for producing 297 mm×210 mm×0.7 mm thin-walled aluminum component was examined experimentally by using 2 different gating systems,tangential and split type,and vent design.Furthermore,computational solidification simulation was also conducted.The results showed that split type gating system was preferable gating design than tangential type gating system at the point of view of soundness of casting and distortion generated after solidification.It was also found that proper vent design was one of the most important factors for producing thin-wall casting components because it was important for the fulfillment of the thin-wall cavity and the minimization of the casting distortion.展开更多
Die casting machines, dies, die castings, peripheral equipments, die lubricants, raw materials for die casting, melting & holding furnaces, cleaning equipments, etc. were exhibited during the 4th China Internation...Die casting machines, dies, die castings, peripheral equipments, die lubricants, raw materials for die casting, melting & holding furnaces, cleaning equipments, etc. were exhibited during the 4th China International Die Casting Exhibition, which was surveyed in the paper.展开更多
SiC is the most common reinforcement in magnesium matrix composites,and the tensile strength of SiC-reinforced magnesium matrix composites is closely related to the distribution of SiC.Achieving a uniform distribution...SiC is the most common reinforcement in magnesium matrix composites,and the tensile strength of SiC-reinforced magnesium matrix composites is closely related to the distribution of SiC.Achieving a uniform distribution of SiC requires fine control over the parameters of SiC and the processing and preparation process.However,due to the numerous adjustable parameters,using traditional experimental methods requires a considerable amount of experimentation to obtain a uniformly distributed composite material.Therefore,this study adopts a machine learning approach to explore the tensile strength of SiC-reinforced magnesium matrix composites in the mechanical stirring casting process.By analyzing the influence of SiC parameters and processing parameters on composite material performance,we have established an effective predictive model.Furthermore,six different machine learning regression models have been developed to predict the tensile strength of SiC-reinforced magnesium matrix composites.Through validation and comparison,our models demonstrate good accuracy and reliability in predicting the tensile strength of the composite material.The research findings indicate that hot extrusion treatment,SiC content,and stirring time have a significant impact on the tensile strength.展开更多
The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production sch...The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production scheduling,this paper presents a multi-objective batch scheduling model for molding and smelting operations on unrelated batch processing machines with incompatible job families and non-identical job sizes.The model aims to minimise the makespan,number of batches,and average vacancy rate of sandboxes.Based on the genetic algorithm,virus optimization algorithm,and two local search strategies,a hybrid algorithm(GA-VOA-BMS)has been designed to solve the model.The GA-VOA-BMS applies a novel Batch First Fit(BFF)heuristic for incompatible job families to improve the quality of the initial population,adopting the batch moving strategy and batch merging strategy to further enhance the quality of the solution and accelerate the convergence of the algorithm.The proposed algorithm was then compared with multi-objective swarm optimization algorithms,namely NSGA-ll,SPEA-l,and PESA-ll,to evaluate its effectiveness.The results of the performance comparison indicate that the proposed algorithm outperforms the others in terms of both qualityand stability.展开更多
A combined FDM/FEM software system was developed to analyze the temperature and stress distributions in castings. The FDM was used to calCulate the temperature distribution while the FEM was used for the stresssimulat...A combined FDM/FEM software system was developed to analyze the temperature and stress distributions in castings. The FDM was used to calCulate the temperature distribution while the FEM was used for the stresssimulation. For practical application, a machine tool bed iron casting was selected and the high temperature mechanical properties of the cast iron were measured. The FDM/FEM simulation results of the temperature and stressdistributions of the solidification process of the casting using current production technology agreed well with the measured temperature and residual stress results. A modified production technology was then proposed. The numericalsimulation results showed that the temperature distribution of the modified production technology was more uniformand the distribution and value of residual stresses were more favorable to dimensional stability of the machine tool.展开更多
Fly ash has congregated considerable attention as a potential reinforcement for aluminum matrix composites(AMCs)to enhance selective properties and reduce the cost of fabrication.However,poor machinability of such AMC...Fly ash has congregated considerable attention as a potential reinforcement for aluminum matrix composites(AMCs)to enhance selective properties and reduce the cost of fabrication.However,poor machinability of such AMCs limits their application.The present study focuses on the preparation of cenosphere fly ash reinforced Al6061alloys by compo casting method.X-ray diffraction analysis of the prepared AMCs exposes the presence of cenosphere particles without any formation of other intermetallic compounds.In this study,electrical discharge machining(EDM)was engaged to examine the machinability of the prepared metal matrix composite(MMCs).The measured performance characteristics for the various combinations of input process parameters were considered to be MRR,EWR and SR.Face centered central composite design(CCD)of response surface method(RSM)was employed to design the number of experimental trials required and a hybrid approach of grey-based response surface methodology(GRSM)was imposed for predicting the optimal combination of processing parameter in EDM process.Generous improvement was observed in the performance characteristics obtained by employing both the optimal setting of machining parameters.The optical3D surface profile graphs of the ED machined surface also revealed the improvement in surface quality and texture employing the optimal processing conditions proposed by hybrid GRSM approach.展开更多
Die casting machines,which are the core equipment of the machinery manufacturing industry,consume great amounts of energy.The energy consumption prediction of die casting machines can support energy consumption quota,...Die casting machines,which are the core equipment of the machinery manufacturing industry,consume great amounts of energy.The energy consumption prediction of die casting machines can support energy consumption quota,process parameter energy-saving optimization,energy-saving design,and energy efficiency evaluation;thus,it is of great significance for Industry 4.0 and green manufacturing.Nevertheless,due to the uncertainty and complexity of the energy consumption in die casting machines,there is still a lack of an approach for energy consumption prediction that can provide support for process parameter optimization and product design taking energy efficiency into consideration.To fill this gap,this paper proposes an energy consumption prediction approach for die casting machines driven by product parameters.Firstly,the system boundary of energy consumption prediction is defined,and subsequently,based on the energy consumption characteristics analysis,a theoretical energy consumption model is established.Consequently,a systematic energy consumption prediction approach for die casting machines,involving product,die,equipment,and process parameters,is proposed.Finally,the feasibility and reliability of the proposed energy consumption prediction approach are verified with the help of three die casting machines and six types of products.The results show that the prediction accuracy of production time and energy consumption reached 91.64%and 85.55%,respectively.Overall,the proposed approach can be used for the energy consumption prediction of different die casting machines with different products.展开更多
Ray-casting technique used to generate realism graphs is creatively applied to simulate the NC machining process of an integral turbo-wheel, thus the representation of a workpiece is redused from 3D to 1D. As a result...Ray-casting technique used to generate realism graphs is creatively applied to simulate the NC machining process of an integral turbo-wheel, thus the representation of a workpiece is redused from 3D to 1D. As a result, simulation speed is raised greatly and the visualization is kept. The relative problems are the discussed in detail and the 5 - axis NC machining process simulation of integral turbo-wheel is illustrated with Ray-casting representation.展开更多
文摘Larger and larger proportions of aluminium castings,especially those produced by the die casting process,can be observed during recent years in the automotive industry,house-hold articles and others.In case of the automotive industry,apart from the traditional elements produced by the die pressure method such as engine blocks or crank shaft bedplates,aluminium is displacing steel from structural parts of cars('body in white').The current state and development directions of the structural solutions of cold-chamber die castings are analysed in this paper.These solutions drive the prospective development of these machines and die casting technology.The focus is mainly on essential functional systems such as:hydraulic drives of closing and locking units,as well as pressing in die machines of known companies present on the European market.
基金supported in part by the National Major Scientific Research Equipment of China (61927803)the National Natural Science Foundation of China Basic Science Center Project (61988101)+1 种基金Science and Technology Innovation Program of Hunan Province (2021RC4054)the China Postdoctoral Science Foundation (2021M691681)。
文摘The copper disc casting machine is core equipment for producing copper anode plates in the copper metallurgy industry.The copper disc casting machine casting package motion curve(CPMC) is significant for precise casting and efficient production.However,the lack of exact casting modeling and real-time simulation information severely restricts dynamic CPMC optimization.To this end,a liquid copper droplet model describes the casting package copper flow pattern in the casting process.Furthermore,a CPMC optimization model is proposed for the first time.On top of this,a digital twin dual closed-loop self-optimization application framework(DT-DCS) is constructed for optimizing the copper disc casting process to achieve self-optimization of the CPMC and closed-loop feedback of manufacturing information during the casting process.Finally,a case study is carried out based on the proposed methods in the industrial field.
文摘A computer control system for drawing machine in horizontal continuous cast set was introduced.The operation features of the drawing machine were analyzed»the hardware configuration and principles of interface circuit for stroke measurements were given out.An effective method was provided,which made the process parameters progressively optimize under the software environment using friendly interface of person-and-computer communication.This method was also adaptable to optimize parameters of other production process which are hard to model.
基金supported by Program for Scientific and Technological Renovation Talents in University of Henan Province (2009HASTIT023)the National Natural Science Foundation of China (50771042)
文摘Gray cast irons were inoculated with FeSi75+RE and FeSi75+Sr inoculants. The changes of apex angle of the drills before and after being used were used to evaluate machinability of gray cast irons. Effect of FeSi75+RE and FeSi75+Sr inoculants on mechanical properties, machinability and sensibility of gray cast iron used in cylinder block were investigated. Experimental results showed that gray cast iron treated with 60%FeSi75+40% RE inoculants exhibited tensile strength consistently at about 295 MPa along with good hardness and improved metallurgical quality. While gray cast iron inoculated with 20%FeSi75+80% Sr inoculants exhibited the best machinability, the lowest cross-section sensibility and the least microhardness difference. The tool flank wear of the drill increased correspondingly with the increase of the microhardness difference of the matrix, indicating the great effect of homogeneity of the matrix on the machinability of gray cast iron.
基金Acknowledgement This work was supported by Korea Institute of Industrial Technology and Gwangju Metropolitan City through "The Advanced Materials and Components Industry Development Program".
文摘Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties. However,manufacturing of thin-walled aluminum die-casting components,less than 1.0 mm in thickness,is generally known to be very difficult task to achieve aluminum casting alloys with high fluidity.Therefore,in this study,the optimal die-casting conditions for producing 297 mm×210 mm×0.7 mm thin-walled aluminum component was examined experimentally by using 2 different gating systems,tangential and split type,and vent design.Furthermore,computational solidification simulation was also conducted.The results showed that split type gating system was preferable gating design than tangential type gating system at the point of view of soundness of casting and distortion generated after solidification.It was also found that proper vent design was one of the most important factors for producing thin-wall casting components because it was important for the fulfillment of the thin-wall cavity and the minimization of the casting distortion.
文摘Die casting machines, dies, die castings, peripheral equipments, die lubricants, raw materials for die casting, melting & holding furnaces, cleaning equipments, etc. were exhibited during the 4th China International Die Casting Exhibition, which was surveyed in the paper.
基金supported by the National Natural Science Foundation of China (Nos.52375394 and 52074246)the National Defense Basic Scientific Research Program of China (No.JCKY2020408B002)Key Research and Development Program of Shanxi Province (No.202102050201011)。
文摘SiC is the most common reinforcement in magnesium matrix composites,and the tensile strength of SiC-reinforced magnesium matrix composites is closely related to the distribution of SiC.Achieving a uniform distribution of SiC requires fine control over the parameters of SiC and the processing and preparation process.However,due to the numerous adjustable parameters,using traditional experimental methods requires a considerable amount of experimentation to obtain a uniformly distributed composite material.Therefore,this study adopts a machine learning approach to explore the tensile strength of SiC-reinforced magnesium matrix composites in the mechanical stirring casting process.By analyzing the influence of SiC parameters and processing parameters on composite material performance,we have established an effective predictive model.Furthermore,six different machine learning regression models have been developed to predict the tensile strength of SiC-reinforced magnesium matrix composites.Through validation and comparison,our models demonstrate good accuracy and reliability in predicting the tensile strength of the composite material.The research findings indicate that hot extrusion treatment,SiC content,and stirring time have a significant impact on the tensile strength.
文摘The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production scheduling,this paper presents a multi-objective batch scheduling model for molding and smelting operations on unrelated batch processing machines with incompatible job families and non-identical job sizes.The model aims to minimise the makespan,number of batches,and average vacancy rate of sandboxes.Based on the genetic algorithm,virus optimization algorithm,and two local search strategies,a hybrid algorithm(GA-VOA-BMS)has been designed to solve the model.The GA-VOA-BMS applies a novel Batch First Fit(BFF)heuristic for incompatible job families to improve the quality of the initial population,adopting the batch moving strategy and batch merging strategy to further enhance the quality of the solution and accelerate the convergence of the algorithm.The proposed algorithm was then compared with multi-objective swarm optimization algorithms,namely NSGA-ll,SPEA-l,and PESA-ll,to evaluate its effectiveness.The results of the performance comparison indicate that the proposed algorithm outperforms the others in terms of both qualityand stability.
文摘A combined FDM/FEM software system was developed to analyze the temperature and stress distributions in castings. The FDM was used to calCulate the temperature distribution while the FEM was used for the stresssimulation. For practical application, a machine tool bed iron casting was selected and the high temperature mechanical properties of the cast iron were measured. The FDM/FEM simulation results of the temperature and stressdistributions of the solidification process of the casting using current production technology agreed well with the measured temperature and residual stress results. A modified production technology was then proposed. The numericalsimulation results showed that the temperature distribution of the modified production technology was more uniformand the distribution and value of residual stresses were more favorable to dimensional stability of the machine tool.
文摘Fly ash has congregated considerable attention as a potential reinforcement for aluminum matrix composites(AMCs)to enhance selective properties and reduce the cost of fabrication.However,poor machinability of such AMCs limits their application.The present study focuses on the preparation of cenosphere fly ash reinforced Al6061alloys by compo casting method.X-ray diffraction analysis of the prepared AMCs exposes the presence of cenosphere particles without any formation of other intermetallic compounds.In this study,electrical discharge machining(EDM)was engaged to examine the machinability of the prepared metal matrix composite(MMCs).The measured performance characteristics for the various combinations of input process parameters were considered to be MRR,EWR and SR.Face centered central composite design(CCD)of response surface method(RSM)was employed to design the number of experimental trials required and a hybrid approach of grey-based response surface methodology(GRSM)was imposed for predicting the optimal combination of processing parameter in EDM process.Generous improvement was observed in the performance characteristics obtained by employing both the optimal setting of machining parameters.The optical3D surface profile graphs of the ED machined surface also revealed the improvement in surface quality and texture employing the optimal processing conditions proposed by hybrid GRSM approach.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51805066)the Natural Science Foundation of Chongqing,China(Grant No.cstc2018jcyjAX0579)。
文摘Die casting machines,which are the core equipment of the machinery manufacturing industry,consume great amounts of energy.The energy consumption prediction of die casting machines can support energy consumption quota,process parameter energy-saving optimization,energy-saving design,and energy efficiency evaluation;thus,it is of great significance for Industry 4.0 and green manufacturing.Nevertheless,due to the uncertainty and complexity of the energy consumption in die casting machines,there is still a lack of an approach for energy consumption prediction that can provide support for process parameter optimization and product design taking energy efficiency into consideration.To fill this gap,this paper proposes an energy consumption prediction approach for die casting machines driven by product parameters.Firstly,the system boundary of energy consumption prediction is defined,and subsequently,based on the energy consumption characteristics analysis,a theoretical energy consumption model is established.Consequently,a systematic energy consumption prediction approach for die casting machines,involving product,die,equipment,and process parameters,is proposed.Finally,the feasibility and reliability of the proposed energy consumption prediction approach are verified with the help of three die casting machines and six types of products.The results show that the prediction accuracy of production time and energy consumption reached 91.64%and 85.55%,respectively.Overall,the proposed approach can be used for the energy consumption prediction of different die casting machines with different products.
文摘Ray-casting technique used to generate realism graphs is creatively applied to simulate the NC machining process of an integral turbo-wheel, thus the representation of a workpiece is redused from 3D to 1D. As a result, simulation speed is raised greatly and the visualization is kept. The relative problems are the discussed in detail and the 5 - axis NC machining process simulation of integral turbo-wheel is illustrated with Ray-casting representation.