期刊文献+
共找到373篇文章
< 1 2 19 >
每页显示 20 50 100
Electrospinning-hot pressing technique for the fabrication of thermal and electrical storage membranes and its applications
1
作者 Panpan Che Baoshan Xie +7 位作者 Penghui Cao Youfu Lv Daifei Liu Huali Zhu Xianwen Wu Zhangxing He Jian Chen Chuanchang Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期1945-1964,共20页
The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage ... The combination of electrospinning and hot pressing,namely the electrospinning-hot pressing technique(EHPT),is an efficient and convenient method for preparing nanofibrous composite materials with good energy storage performance.The emerging composite membrane prepared by EHPT,which exhibits the advantages of large surface area,controllable morphology,and compact structure,has attracted immense attention.In this paper,the conduction mechanism of composite membranes in thermal and electrical energy storage and the performance enhancement method based on the fabrication process of EHPT are systematically discussed.Moreover,the state-of-the-art applications of composite membranes in these two fields are introduced.In particular,in the field of thermal energy storage,EHPT-prepared membranes have longitudinal and transverse nanofibers,which generate unique thermal conductivity pathways;also,these nanofibers offer enough space for the filling of functional materials.Moreover,EHPT-prepared membranes are beneficial in thermal management systems,building energy conservation,and electrical energy storage,e.g.,improving the electrochemical properties of the separators as well as their mechanical and thermal stability.The application of electrospinning-hot pressing membranes on capacitors,lithium-ion batteries(LIBs),fuel cells,sodium-ion batteries(SIBs),and hydrogen bromine flow batteries(HBFBs)still requires examination.In the future,EHPT is expected to make the field more exciting through its own technological breakthroughs or be combined with other technologies to produce intelligent materials. 展开更多
关键词 electrospinning-hot pressing technique thermal storage electrical storage composite membranes NANOFIBER
下载PDF
Ultrahigh strength and improved electrical conductivity in an aging strengthened copper alloy processed by combination of equal channel angular pressing and thermomechanical treatment
2
作者 WANG Xu LI Zhou +1 位作者 MENG Xiang-peng XIAO Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1823-1837,共15页
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper... In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample. 展开更多
关键词 Cu-Ti alloy equal channel angular pressing ROLLING aging treatment high strength
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
3
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Effect of Adhesive Type on the Quality of Coconut Shell Charcoal Briquettes Prepared by the Screw Extruder Machine
4
作者 Samsudin Anis Deni Fajar Fitriyana +7 位作者 Aldias Bahatmaka Muhammad Choirul Anwar Arsyad Zanadin Ramadhan Fajar Chairul Anam Raffanel Adi Permana Ahmad Jazilussurur Hakim Natalino Fonseca Da Silva Guterres Mateus De Sousa Da Silva 《Journal of Renewable Materials》 EI CAS 2024年第2期381-396,共16页
Indonesia is one of the largest coconut-producing countries in the world.The utilization of coconut shell waste into briquettes will increase the selling value and become a great export opportunity.However,the effect ... Indonesia is one of the largest coconut-producing countries in the world.The utilization of coconut shell waste into briquettes will increase the selling value and become a great export opportunity.However,the effect of adhesives on the quality of coconut shell charcoal briquettes made using screw extruder machine has not been widely studied.This study aims to determine the effect of adhesive type on the quality of coconut shell charcoal briquettes.The process of fabricating briquettes in this study included crushing,mixing,blending,pressing,and drying.In the mixing process,3 types of adhesives were used,namely tapioca flour(Briquette_1),cassava flour(Briquette_2),and modified cassava flour(Briquette_3)with a concentration of 5%of the weight of coconut shell charcoal powders.The quality of the resulting briquettes and commercial briquettes will be evaluated by moisture content,ash content,volatile matter,fixed carbon,calorific value,density,compressive,and drop test testing.The results of this research showed that the type of adhesive had a significant effect on the quality of the briquettes produced.Specimen Briquette_1 had better quality than commercial briquettes(Briquette_4)and other briquette specimens.The test results showed that Briquette_1 produced briquettes with better compressive strength and friability than the other specimens,at 6.95 N/mm^(2) and 4.44%,respectively.The moisture content,ash content,fixed carbon,and calorific value of Briquette_1 have met the requirements set by the Indonesian National Standard(SNI)number 01-6235-2000.Meanwhile,the volatile matter content and density of Briquette_1 are by the standards of Japan and the United States America(USA). 展开更多
关键词 COCONUT charcoal BRIQUETTES ADHESIVE MIXING BLENDING PRESSING
下载PDF
Solid state recycling of Mg-Gd-Y-Zn-Zr alloy chips by isothermal sintering and equal channel angular pressing
5
作者 Yanbo Pei Hongjun Ma +1 位作者 Meng Yuan Bugang Teng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2725-2740,共16页
The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycli... The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%. 展开更多
关键词 Mg-Gd-Y-Zn-Zr alloy Solid state recycling Microstructure evolution LPSO phase Equal channel angular pressing
下载PDF
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
6
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 Metal matrix composites Powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing Ballistic tests
下载PDF
Influence of Formulation and Hot-Pressing Conditions on the Performance of Bio-Based Molasses Adhesive for Plywood
7
作者 Jajang Sutiawan Alifah Syahfitri +5 位作者 Sukma Surya Kusumah Dede Hermawan Rita Kartika Sari Luthfi Hakim Efri Mardawati Muhammad Adly Rahandi Lubis 《Journal of Renewable Materials》 EI CAS 2024年第8期1383-1397,共15页
Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifica... Molasses can serve as a natural adhesive for plywood and particleboard.However,several disadvantages remain,including lower dimensional stability and low bonding strength compared to other adhesives.Therefore,modifications are needed to use molasses as an adhesive for plywood.This research aims to improve bio-based molasses(MO)adhesive for plywood using citric acid(CA)adhesive.In addition,this research aims to analyze the effect of adding citric acid and to investigate the optimum hot-pressing temperature to produce the best quality plywood.In the first stage,the molasses and citric acid were combined in a ratio of 100:0,75:25,50:50,25:75,0:100 w/w%.Then,the second stage focuses on analyzing the influences of pressing temperature based on an optimum first stage.The research demonstrated that the addition of CA altered the gelation time,solid content,viscosity,and pH of the molasses adhesives.In addition,the thermal properties of molasses adhesives were changed after mixing with citric acid.These phenomena indicate changes in characteristics,such as the curing of adhesive.Overall,the characteristics of plywood showed a steady improvement as the CA ratio increased but revealed a significant decline for the 25:75 MO-CA ratio.By raising the pressing temperature from 180℃ to 200℃,the quality of plywood was effectively improved.The plywood that was bonded using adhesives with a 50:50 MO-CA ratio exhibited superior mechanical properties and improved dimensional stability compared to the plywood bonded solely with MO.Furthermore,the optimal mechanical and physical properties resulted in plywood bonded with a 50:50 MO-CA ratio when subjected to a pressing temperature of 200℃.The Thermal and FTIR measurements revealed that CA established ester bonds with both the MO and wood veneers.In conclusion,the mechanical characteristics of plywood were improved,while maintaining its excellent dimensional stability. 展开更多
关键词 Citric acid composite MOLASSES pressing temperature PLYWOOD
下载PDF
Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing 被引量:3
8
作者 Lebiao Yang Xiaona Ren +4 位作者 Chao Cai Pengju Xue MIrfan Hussain Yusheng Shi Changchun Ge 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第1期122-130,共9页
The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindric... The Shima yield criterion used in finite element analysis for nickel-based superalloy powder compact during hot isostatic pressing(HIP) was modified through uniaxial compression experiments. The influence of cylindrical capsule characteristics on FGH4096M superalloy powder compact deformation and densification behavior during HIP was investigated through simulations and experiments. Results revealed the simulation shrinkage prediction fitted well with the experimental shrinkage including a maximum shrinkage error of 1.5%. It was shown that the axial shrinkage was 1.7% higher than radial shrinkage for a cylindrical capsule with the size of ∮50 mm × 100 mm due to the force arm difference along the axial and radial direction of the capsule. The stress deviated from the isostatic state in the capsule led to the uneven shrinkage and non-uniform densification of the powder compact. The ratio of the maximum radial displacement to axial displacement increased from0.47 to 0.75 with the capsule thickness increasing from 2 to 4 mm. The pressure transmission is related to the capsule thickness, the capsule material performance, and physical parameters in the HIP process. 展开更多
关键词 hot isostatic pressing nickel-based superalloy compact CAPSULE DENSIFICATION DEFORMATION
下载PDF
Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing 被引量:2
9
作者 Langping Zhu Yu Pan +6 位作者 Yanjun Liu Zhiyu Sun Xiangning Wang Hai Nan Muhammad-Arif Mughal Dong Lu Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期697-706,共10页
Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. Howev... Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy. 展开更多
关键词 POWDER titanium alloy hot isostatic pressing STRENGTH fracture toughness
下载PDF
Effect of hot isostatic pressing processing parameters on microstructure and properties of Ti60 high temperature titanium alloy 被引量:2
10
作者 Tian-yu Liu Kun Shi +6 位作者 Jun Zhao Shi-bing Liu You-wei Zhang Hong-yu Liu Tian-yi Liu Xiao-ming Chen Xin-min Mei 《China Foundry》 SCIE CAS CSCD 2023年第1期49-56,共8页
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ... Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity. 展开更多
关键词 hot isostatic pressing processing parameters Ti60 titanium alloy DEFECTS composition uniformity microstructure mechanical properties
下载PDF
Simple shear extrusion versus equal channel angular pressing:A comparative study on the microstructure and mechanical properties of an Mg alloy 被引量:2
11
作者 A.Rezaei R.Mahmudi +1 位作者 C.Cayron R.E.Logé 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1769-1790,共22页
Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The mi... Two severe plastic deformation(SPD)techniques of simple shear extrusion(SSE)and equal channel angular pressing(ECAP)were employed to process an extruded Mg-6Gd-3Y-1.5Ag(wt%)alloy at 553 K for 1,2,4 and 6 passes.The microstructural evolutions were studied by electron back scattered diffraction(EBSD)analysis and transmission electron microscopy(TEM).The initial grain size of 7.5μm in the extruded alloy was reduced to about 1.3μm after 6 SPD passes.Discontinuous dynamic recrystallization was suggested to be operative in both SSE and ECAP,with also a potential contribution of continuous dynamic recrystallization at the early stages of deformation.The difference in the shear strain paths of the two SPD techniques caused different progression rate of dynamic recrystallization(DRX),so that the alloys processed by ECAP exhibited higher fractions of recrystallization and high angle grain boundaries(HAGBs).It was revealed that crystallographic texture was also significantly influenced by the difference in the strain paths of the two SPD methods,where dissimilar basal plane texture components were obtained.The compression tests,performed along extrusion direction(ED),indicated that the compressive yield stress(CYS)and ultimate compressive strength(UCS)of the alloys after both SEE and ECAP augmented continuously by increasing the number of passes.ECAP-processed alloys had lower values of CYS and UCS compared to their counterparts processed by SSE.This difference in the mechanical responses was attributed to the different configurations of basal planes with respect to the loading direction(ED)of each SPD technique. 展开更多
关键词 Mg-Gd-Y alloys Severe plastic deformation Simple shear extrusion Equal channel angular pressing Dynamic recrystallization Mechanical properties
下载PDF
Wear resistance performance of high entropy alloy–ceramic coating composites synthesized via a novel combined process 被引量:1
12
作者 Junyu Chen Yu Yang +3 位作者 Yuzheng Pan Yang You Liwen Hu Meilong Hu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期202-213,共12页
Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powde... Titanium nitride(TiN), characterized by its high hardness and strength, was widely used as ceramic coating to improve the wear resistance of matrix materials. In this work, AlCrFeNiTi_(x) high-entropy alloy(HEA) powders were synthesized by direct electrochemical reduction in molten salt from the mixed metal oxides. Then,TiN ceramic coating on the AlCrFeNiTi_x bulk HEA containing the topologically close-packed(TCP) phase(σphase, Laves phase, and Ti_(3)Al phase) was prepared by vacuum hot pressing sintering, where nitride element come from boron nitride parting agent sprayed on the graphite mold. The effect of titanium content on the crystal structure, microstructure, hardness, and wear resistance of the products were investigated by X-ray diffraction, field emission scanning electron microscope, field emission electron-probe microanalysis,Vickers hardness tester, and friction–abrasion testing machine. The bulk HEAs exhibit excellent hardness and its hardness increases significantly with the increase of titanium content. The wear mechanism changes from both of predominantly delamination and accompanied oxidative wear to single delamination wear,which is due to ultra-high melting point and high hot hardness of TiN, that can effectively prevent the oxidation and deformation of the worn surface. Formation of the ceramic coatings containing the TiN second phase and TCP phase are the key factor to AlCrFeNiTi_x alloy with the excellent hardness and wear properties. 展开更多
关键词 High-entropy alloys Electrochemical reduction Vacuum hot pressing sintering HARDNESS Wear resistance
下载PDF
Superplastic behavior of a fine-grained Mg-Gd-Y-Ag alloy processed by equal channel angular pressing 被引量:1
13
作者 A.Rezaei R.Mahmudi R.E.Logé 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3815-3828,共14页
An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed ... An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed a fully recrystallized microstructure for the extruded alloy with a mean grain size of 8.6 μm. The microstructure of the ECAP-processed alloy was uniformly refined through dynamic recrystallization(DRX). This microstructure contained fine grains with an average size of 1.3 μm, a high fraction of high angle grain boundaries(HAGBs), and nano-sized Mg_(5)Gd-type particles at the boundaries of the DRXed grains, detected by transmission electron microscopy(TEM). High-temperature shear punch testing(SPT) was used to evaluate the superplastic behavior of both the extruded and ECAP-processed alloys by measuring the strain rate sensitivity(SRS) index(m-value). While the highest m-value for the extruded alloy was measured to be 0.24 at 673 K, the ECAP-processed alloy exhibited much higher m-values of 0.41 and 0.52 at 598 and 623 K, respectively,delineating the occurrence of superplastic flow. Based on the calculated average activation energy of 118 kJ mol^(-1) and m-values close to 0.5, the deformation mechanism for superplastic flow at the temperatures of 598 and 623 K for the ECAP-processed alloys was recognized to be grain boundary sliding(GBS) assisted by grain boundary diffusion. 展开更多
关键词 Mg-Gd-Y alloys Equal channel angular pressing SUPERPLASTICITY Strain rate sensitivity Grain boundary sliding
下载PDF
Tension-Compression Asymmetry in Ultrafine-grained Commercially Pure Ti Processed by ECAP
14
作者 刘晓燕 LI Shuaikang +1 位作者 YANG Xirong LUO Lei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期689-694,共6页
A homogenous microstructure of ultrafine-grained (UFG) commercially pure (CP) Ti characterized by equiaxed grains/subgrains with an average grain size of about 150 nm and strong prismatic fiber texture were obtained a... A homogenous microstructure of ultrafine-grained (UFG) commercially pure (CP) Ti characterized by equiaxed grains/subgrains with an average grain size of about 150 nm and strong prismatic fiber texture were obtained after 4 passes of equal channel angular pressing (ECAP).Tension–compression asymmetry in yield and work hardening behavior of UFG CP Ti were investigated by uniaxial tension and compression tests.The experimental results reveal that UFG CP Ti exhibits a relatively obvious tensioncompression asymmetry in yielding and work hardening behavior.The basal and prismaticslip are suppressed either for tension or compression,which is the easiest to activate.The tension twin system{1012}<1011> easily activated in compression deformation due to the prismatic fiber texture based on the Schmidt factor,consequently resulting in a lower yield strength under compression than tension.ECAP can improve the tension-compression asymmetry of CP Ti due to grain refinement.The interaction among the dislocations,grain boundaries and deformation twins are the main work hardening mechanisms for compression deformation,while the interaction between the dislocations and grain boundaries for tension deformation.Deformation twins lead to the higher work hardening under compression than tension. 展开更多
关键词 ultrafine-grained commercially pure Ti equal channel angular pressing tensioncompression asymmetry texture TWINNING
下载PDF
Effect of Solution-ECAP-Aging Treatment on the Microstructure and Properties of TB8 Titanium Alloy
15
作者 陈枫华 许晓静 +3 位作者 LIU Yangguang HU Chaoxing CAO Bin BAI Xiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期669-676,共8页
The microstructure and mechanical properties of the TB8 titanium alloy were controlled by a secondary processing technology of solution-equal channel angular pressing(ECAP)-aging treatment,which combined strong plasti... The microstructure and mechanical properties of the TB8 titanium alloy were controlled by a secondary processing technology of solution-equal channel angular pressing(ECAP)-aging treatment,which combined strong plastic deformation with heat treatment. The effects of ECAP and heat treatment on the microstructure and properties of the titanium alloy were systematically investigated by optical microscopy(OM), scanning electron microscopy(SEM), hardness tests, and tensile property analysis. The results indicate that the metallographic structure without ECAP treatment is mainly equiaxed β-phase, while that after ECAP treatment is equiaxed β-phase with grain fragmentation, slip bands, and new small grains. After 850 ℃ solutionECAP-520 ℃ aging treatment, the titanium alloy has the smallest grain size, while the directionality of tissue growth along the ECAP direction is the most apparent. Under the same solution-aging conditions, the hardness of the titanium alloy increases from 431.5 to 531.2 HV compared to that without ECAP treatment, i e, increases by 23.11%, and the tensile strength increases from 1 045.30 to 1 176.25 MPa, i e, increases by 12.5%. 展开更多
关键词 equal channel angular pressing heat treatment TB8 titanium alloys MICROSTRUCTURE mechanical properties
下载PDF
In Situ Reaction Strengthening and Toughening of B_(4)C/TiSi_(2)Ceramics
16
作者 夏涛 涂晓诗 +2 位作者 张帆 ZHANG Jinyong REN Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期12-19,共8页
B_(4)C-SiC-TiB_(2)ceramics were prepared by in situ reactive hot-pressing sintering with TiSi_(2)as an additive.The reaction pathways of TiSi_(2)and B_(4)C were investigated.The sintering was found to be a multistep p... B_(4)C-SiC-TiB_(2)ceramics were prepared by in situ reactive hot-pressing sintering with TiSi_(2)as an additive.The reaction pathways of TiSi_(2)and B_(4)C were investigated.The sintering was found to be a multistep process.The reaction started at approximately 1000℃,and TiB_(2)was formed first.Part of Si and C started to react at 1300℃,and the unreacted Si melted at 1400℃to form a liquid phase.TiSi_(2)predominantly affected the intermediate sintering process of B_(4)C and increased the sintering rate.Due to the unique reaction process of TiSi_(2)and B_(4)C,a large number of aggregates composed of SiC and TiB_(2)were generated.The results showed that composite ceramics with the optimal flexural strength of 807 MPa,fracture toughness of 3.2 MPa·m1/2,and hardness of 32 GPa,were obtained when the TiSi_(2)content was 10 wt%. 展开更多
关键词 in situ reaction hot pressing sintering TiSi_(2) B_(4)C composite ceramics reaction mechanism
下载PDF
Preparation and Study of Carbide-SiAlON Composite in SiC-SiAlON-Al2O3 Syste
17
作者 Zviad Kovziridze Natela Nizharadze +6 位作者 Gulnazi Tabatadze Marina Kapanadze Nazi Kutsiava Tsira Danelia Nino Darakhvelidze Maia Balakhashvili Salome Gvazava 《Advances in Materials Physics and Chemistry》 CAS 2023年第5期59-76,共18页
Goal: Synthesis of SiAlON by reaction coating method using aluminosilicate natural raw material geopolymer (kaolin), corundum and silicon carbide and on its basis obtaining a composite with high physical and technical... Goal: Synthesis of SiAlON by reaction coating method using aluminosilicate natural raw material geopolymer (kaolin), corundum and silicon carbide and on its basis obtaining a composite with high physical and technical properties by hot pressing for use in armor and rocket technology. For the intensification of SiAlON formation and sintering processes, the influence of various additives was studied, such as: aluminum powder, elemental silicon, yttrium and magnesium oxides. Method: A SiAlON-containing composite with an open porosity of 15% - 16% was obtained by the metallothermic process and the method of reactive annealing in nitrogen. The resulting material was milled to a dispersion of 1 - 3 μm and hot pressed at 1620°C to obtain a product with high density and performance properties. We studied the process of SiAlON formation and the microstructure of the composite by X-ray phase, optical and electronmicroscopy analysis methods. Result: In the selected composition the β-SiAlON was formed at 1400°C instead of 1800°C, which was due to the mutual influence of the initial raw materials: geopolymer kaolin, perlite, corundum, aluminum, silicon, SiC, the development of the process is facilitated by the vitreous dopant perlite (96 glass phase). The use of perlite, which is eutectic with geopolymer at low temperatures, creates a good prerequisite for intensive diffusion processes with other components. Conclusion: A SiAlON-containing composite with high physical and technical properties was obtained in the SiC-SiAlON-Al<sub>2</sub>O<sub>3</sub> system by the method of reactive sintering and hot pressing, with the following properties: the strength limit in compression is 1940 MPa, and in bending it is 490 MPa. The process of making SiAlON has been studied using X-ray phase and electron microscopy analysis methods. The physical and technical properties of the obtained composite are studied by modern research methods. 展开更多
关键词 SIALON COMPOSITE Hot Pressing MICROSTRUCTURE Phase Composition
下载PDF
Preparation of Al-doped ZnO sputter target by hot pressing 被引量:6
18
作者 王星明 白雪 +4 位作者 段华英 石志霞 孙静 卢世刚 黄松涛 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1550-1556,共7页
Al-doped ZnO (AZO) target was prepared by hot pressing using ZnO and Al2O3 powder in mass ratio of 98:2.The effects of hot pressing conditions including temperature,pressure and preserving time on relative density ... Al-doped ZnO (AZO) target was prepared by hot pressing using ZnO and Al2O3 powder in mass ratio of 98:2.The effects of hot pressing conditions including temperature,pressure and preserving time on relative density were investigated.Pore evolution and phase structure change during densification process were studied.The results show that AZO target with super high relative density of 99% was prepared by two-stage hot pressing method under pressure of 35MPa,temperature of 1 050℃ and 1 150℃ with preserving time of 1 h,respectively.At temperature around 1 050℃,the number of isolated pore wasminimum.At temperature lower than 900℃,there existed Al2O3 phase.At temperature higher than 1 000℃,ZnAl2O4 phase was generated and its content was increased with temperature increasing.Hot pressing method had the advantage over pressureless sintering that the content of ZnAl2O4 was lower and sintering temperature could be also lower.With increasing the hot pressing temperature and preserving time,the electric resistivity of AZO target decreased greatly.A low resistivity of 3 10-3 cm was achieved under the temperature of 1 100℃,pressure of 35MPa and preserving time of 10 h. 展开更多
关键词 aluminum-doped ZnO (AZO) sputter target hot pressing PORE phase structure
下载PDF
Aging behavior and mechanical properties of 6013 aluminum alloy processed by severe plastic deformation 被引量:8
19
作者 刘满平 蒋婷慧 +5 位作者 王俊 刘强 吴振杰 Ying-da YU Pl C.SKARET Hans J.ROVEN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3858-3865,共8页
Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparative... Structural features, aging behavior, precipitation kinetics and mechanical properties of a 6013 Al–Mg–Si aluminum alloy subjected to equal channel angular pressing (ECAP) at different temperatures were comparatively investigated with that in conventional static aging by quantitative X-ray diffraction (XRD) measurements, differential scanning calorimetry (DSC) and tensile tests. Average grain sizes measured by XRD are in the range of 66-112 nm while the average dislocation density is in the range of 1.20×10^14-1.70×10^14 m^-2 in the deformed alloy. The DSC analysis reveals that the precipitation kinetics in the deformed alloy is much faster as compared with the peak-aged sample due to the smaller grains and higher dislocation density developed after ECAP. Both the yield strength (YS) and ultimate tensile strength (UTS) are dramatically increased in all the ECAP samples as compared with the undeformed counterparts. The maximum strength appears in the samples ECAP treated at room temperature and the maximum YS is about 1.6 times that of the statically peak-aged sample. The very high strength in the ECAP alloy is suggested to be related to the grain size strengthening and dislocation strengthening, as well as the precipitation strengthening contributing from the dynamic precipitation during ECAP. 展开更多
关键词 Al-Mg-Si aluminum alloy severe plastic deformation equal-channel angular pressing aging behavior precipitation kinetics mechanical properties strengthening mechanisms
下载PDF
Effect of equal-channel angular pressing and aging on corrosion behavior of ZK60 Mg alloy 被引量:6
20
作者 李鑫 江静华 +3 位作者 赵永好 马爱斌 文道静 朱运田 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期3909-3920,共12页
Commercial ZK60 Mg alloy was processed by multi-pass equal-channel angular pressing(ECAP) and subsequent aging to investigate the effect of grain refinement and second-phase redistribution on its corrosion behavior.... Commercial ZK60 Mg alloy was processed by multi-pass equal-channel angular pressing(ECAP) and subsequent aging to investigate the effect of grain refinement and second-phase redistribution on its corrosion behavior. Electrochemical tests show that the fine-grained samples after more ECAP passes have higher corrosion current densities(Jcorr) in the polarization curves, lower charge-transfer resistance(Rt) values in the EIS plots. The severe plastic deformation decreases the alloy corrosion resistance besides the well-known strengthening and toughening. Scanning Kelvin probe(SKP) measurement shows that the anodic and cathode sites are homogeneously distributed on the surface of the fine-grained alloy, which inhibits localized corrosion. The SKP potential, having linear relationship with the corrosion potential(φcorr), decreases with increasing the ECAP pass. Furthermore, the post-ECAP aging can slightly improve the corrosion resistance of the fine-grained ZK60 Mg alloy and enhance the comprehensive performances, due to the stress relief and uniform distribution of second-phase particles. 展开更多
关键词 ZK60 Mg alloy equal-channel angular pressing AGING corrosion resistance fine-grains
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部