期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation 被引量:14
1
作者 Jiang Wenming Fan Zitian 《China Foundry》 SCIE CAS 2014年第2期119-124,共6页
To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the Pr... To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on fi lling and solidifi cation processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the fi lling of the molten metal is not stable; and the casting does not follow the sequence solidifi cation, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the fi lling time is prolonged from 4.0 s to 4.5 s, the fi lling of molten metal becomes stable, but this casting does not follow the sequence solidifi cation either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced. 展开更多
关键词 low pressure casting A356 aluminum alloy numerical simulation OPTIMIZATION intake manifold
下载PDF
Effect of pressurizing speed on filling behavior of gradual expansion structure in low pressure casting of ZL205A alloy 被引量:7
2
作者 Shan-guang Liu Chuan-biao Luo +3 位作者 Guo-ai Li Wen-lin Gao Zheng Lu Sheng-long 《China Foundry》 SCIE 2018年第4期276-282,共7页
The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get... The mold filling behavior of gradual expansion structure in low pressure casting was studied by two phase flow model using the Volume of Fluid method, and was verified by water simulation with a Plexiglas mold. To get smooth mold filling process and provide a guide for the pressurizing speed design in the producing practice, the mathematical model with the pressurizing speed, expansion angle and height of the gradual expansion structure was established. For validation experiments, ZL205 A alloy castings were produced under two different pressurizing speeds. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. Mechanical properties of ZL205 A alloy were applied to assess the entrainment of oxide film. The results show that the filling process of a gradual expansion structure in a low pressure casting can be divided into the spreading stage and filling stage by gate velocity. The gate velocity continues to increase in the gradual expansion structure, and increases with the increase of pressurizing speed or expansion angle. Under the effect of the falling fluid raised by the jet flow along the sidewall, the fluid velocity decreases in the jet zone from ingate to free surface. As such, oxide film entrainment does not occur when the gate velocity is greater than the critical velocity, andthe gate velocity no longer reflects the real state of the free surface. The scatter of the mechanical properties is strongly affected by the entrainment of oxide films. 展开更多
关键词 low pressure casting two phase flow water simulation oxide film ZL205A alloy
下载PDF
Influence of filling parameters on fatigue properties of A357 alloy produced by counter pressure plaster mold casting 被引量:6
3
作者 李强 郝启堂 +1 位作者 介万奇 Maijer DAAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1281-1285,共5页
The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Tagu... The influence of filling parameters including pouring temperature, filling speed, boost pressure and synchronous pressure on the fatigue of A357 alloy produced by counter pressure plaster casting was studied. The Taguchi method was used to investigate the relationship between the fatigue performance and filling parameters. The results show that filling speed is the most significant factor among the four parameters. Synchronous pressures is less influential on the fatigue life when the value of synchronous pressure is from 400 kPa to 600 kPa. 展开更多
关键词 counter pressure casting A357 alloy filing parameters fatigue properties
下载PDF
Characteristics and distribution of microstructures in high pressure die cast alloys with X-ray microtomography:A review
4
作者 Hai-dong Zhao Xue-ling Wang +2 位作者 Qian Wan Wen-hui Bai Fei Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期427-444,共18页
Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure ... Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys. 展开更多
关键词 high pressure die casting microstructure three-dimensional characteristics DISTRIBUTION Al and Mg alloys
下载PDF
Effect of slow shot speed on externally solidified crystal,porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy
5
作者 Wen-ning Liu Wei Zhang +6 位作者 Peng-yue Wang Yi-xian Liu Xiang-yi Jiao Ao-xiang Wan Cheng-gang Wang Guo-dong Tong Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第1期11-19,共9页
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi... The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%). 展开更多
关键词 hypoeutectic Al-Si alloy high pressure die casting POROSITY externally solidified crystal tensile property
下载PDF
Pressurization control system for low pressure crucible casting 被引量:2
6
作者 Li Qiang Hao Qitang Jie Wanqi 《China Foundry》 SCIE CAS 2011年第4期376-379,共4页
A new compact pressurization control system of the low pressure casting machine for crucible pressure casting has been developed. It is especially designed for the production of high-quality aluminum or magnesium allo... A new compact pressurization control system of the low pressure casting machine for crucible pressure casting has been developed. It is especially designed for the production of high-quality aluminum or magnesium alloy parts with low input cost. This machine with such a system has the virtue of economical and compact, and combines the Fuzzy-PID technology and achieves accuracies of ±2.5 mbar. At present, this machine has been adopted by several users in China for the production of aluminum alloy castings with high property requirements. Furthermore, for magnesium alloy castings, this machine can be used with the gas protect unit. 展开更多
关键词 crucible pressure casting low pressure casting pressurization control system
下载PDF
Characterization of A390 aluminum alloy produced at different slow shot speeds using vacuum assisted high pressure die casting 被引量:10
7
作者 Wen-bo YU Zi-hao YUAN +1 位作者 Zhi-peng GUO Shou-mei XIONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第12期2529-2538,共10页
The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum al... The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum alloy were produced on a TOYO BD?350V5cold chamber die casting machine incorporated with a self-improved TOYO vacuum system.According to the results,the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling.Meanwhile,tensile properties of vacuum die castings were deteriorated by the porosity content.In addition,the average primary silicon size decreased from23to14μm when the slow shot speed increased from0.05to0.2m/s,which has a binary functional relationship with the slow shot speed.After heat treatment,microstructural morphologies revealed that needle-shaped and thin-flaked eutectic silicon particles became rounded while Al2Cu dissolved intoα(Al)matrix.Furthermore,the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment. 展开更多
关键词 A390 aluminum shot speed vacuum assisted high pressure die casting (VHPDC) Si distribution tensile strength heat treatment
下载PDF
Simulation of mold filling and prediction of gas entrapment on practical high pressure die castings 被引量:10
8
作者 赵海东 白砚飞 +1 位作者 欧阳晓贤 董普云 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第11期2064-2070,共7页
Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in castin... Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period. 展开更多
关键词 high pressure die casting mold filling gas entrapment
下载PDF
Determination of interfacial heat transfer coefficient and its application in high pressure die casting process 被引量:6
9
作者 Cao Yongyou Guo Zhipeng Xiong Shoumei 《China Foundry》 SCIE CAS 2014年第4期314-321,共8页
In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of castin... In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found. 展开更多
关键词 high pressure die casting interfacial heat transfer coefficient inverse method
下载PDF
Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy 被引量:4
10
作者 GUO Zhi-peng XIONG Shou-mei +2 位作者 M. Murakami Y. Matsumoto S. Ikeda 《China Foundry》 SCIE CAS 2007年第1期5-9,共5页
The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry... The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior. 展开更多
关键词 high pressure die casting (HPDC) magnesium alloy interfacial heat transfer coefficient(IHTC)
下载PDF
Defect band formation in high pressure die casting AE44 magnesium alloy 被引量:2
11
作者 Ying-ying Hou Meng-wu Wu +2 位作者 Feng Huang Xiao-bo Li Shou-mei Xiong 《China Foundry》 SCIE CAS 2022年第3期201-210,共10页
The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC proces... The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC process and casting structure on the distribution of defect bands.Results show that the defect bands are solute segregation bands with the enrichment of Al,Ce and La elements,which are basically in the form of Al_(11)RE_(3) phase.There is no obvious aggregation of porosities in the defect bands.The width of the inner defect band is 4-8 times larger than that of the outer one.The variation trends of the distribution of the inner and outer defect bands are not consistent under different process parameters and at different locations of castings.This is due to the discrepancy between the formation mechanisms of double defect bands.The filling and solidification behavior of the melt near the chilling layer is very complicated,which finally leads to a fluctuation of the width and location of the outer defect band.By affecting the content and aggregation degree of externally solidified crystals(ESCs)in the cross section of die castings,the process parameters and casting structure have a great influence on the distribution of the inner defect band. 展开更多
关键词 high pressure die casting magnesium alloy AE44 defect band MICROSTRUCTURE
下载PDF
Effects of magnesium and copper additions on tensile properties of Al-Si-Cr die casting alloy under as-cast and T5 conditions 被引量:1
12
作者 Hong-yi Zhan Yi-wu Xu +3 位作者 Pan Wang Jian-feng Wang Jin-ping Li Le-peng Zhang 《China Foundry》 SCIE CAS CSCD 2023年第1期12-22,共11页
Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mas... Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mass-efficient thin-walled body structures.For body structures that require excellent ductility and fracture toughness to be joined with steel sheet via self-piercing riveting(for instance,shock towers and hinge pillars,etc.),a costly T7 heat treatment comprising a solution heat treatment at elevated temperatures(450℃-500℃)followed by an over-ageing heat treatment is needed to optimize microstructure for meeting product requirement.To enable cost-efficient mass production of HPDC body structures,it is important to eliminate the expensive T7 heat treatment without sacrificing mechanical properties.Optimizing die cast alloy chemistry is a potential solution to improve fracture toughness and ductility of the HPDC components.The present study intends to tailor the Mg and Cu additions for a new Al-Si-Cr type die casting alloy(registered as A379 with The Aluminum Association,USA)to achieve the desired tensile properties without using T7 heat treatment.It was found that Cu addition should be avoided,as it is not effective in enhancing strength while degrades tensile ductility.Mg addition is very effective in improving strength and has minor impact on tensile ductility.The investigated Al-Si-Cr alloy with a nominal composition of Al-8.5wt.%Si-0.3wt.%Cr-0.2wt.%Fe shows comparable tensile properties with the T7 treated AlSi10MnMg alloy which is currently used for manufacturing shock towers and hinge pillars. 展开更多
关键词 Al-Si alloy INTERMETALLICS high pressure die casting tensile property T7 heat treatment
下载PDF
Heat Transfer between Casting and Die during High Pressure Die Casting Process of AM50 Alloy-Modeling and Experimental Results
13
作者 Zhipeng GUO Shoumei XIONG +1 位作者 Sang-Hyun Cho Jeong-Kil Choi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期131-135,共5页
A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die cas... A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process.Experiments were carried out using step shape casting and a commercial magnesium alloy,AM50.Temperature profiles were measured and recorded using thermocouples embedded inside the die. Based on these temperature readings,the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values,after which their values decrease to a much lower level until the dies are opened.Different patterns of heat transfer behavior were found between the die and the casting at different thicknesses.The thinner the casting was,the more quickly the HFD and IHTC reached their steady states.Also,the values for both the HFD and IHTC values were different between die and casting at different thicknesses. 展开更多
关键词 Interfacial heat transfer coefficient High pressure die casting process AM50 Magnesium alloy
下载PDF
THE PRODUCTION OF FOAM ALUMINIUM ALLOY BY LOW-PRESSURE INFILTRATION METHOD 被引量:2
14
作者 Y. Zhang, Z.D. Zhao and J.C. Ding Department of Mechanical Engineering, Shandong Institute of Technology, Zibo 255012,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期747-751,共5页
The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the... The influence of technical parameters on the infiltrating height of the moltenmetal in the process of Producing aluminium alloy foam by low-pressure infiltration method were investigated.Experiments indicated that the height increases with the preheating temperature of granules,theexternal pressureand the pouring temperature of molten alloy,among which the action of pre heating temperature of granules is more effective.There exists a critical pre heating temperature for different size of granules. 展开更多
关键词 aluminium alloy foam low pressure casting INFILTRATION
下载PDF
Strength and ductility optimization of HPDC AlSi8MgCuZn2 alloys by modifying pre-aging treatment
15
作者 Yuan-hang Jiang Hui-ting Zheng +1 位作者 Fei Liu Hai-dong Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第4期343-351,共9页
Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further impro... Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further improve their mechanical properties.In this study,two-stage aging treatment with different pre-aging times was designed and employed to further improve the mechanical properties of HPDC Al8SiMgCuZn alloy.The characteristics of precipitates were evaluated by a transmission electron microscope(TEM),and the precipitation strengthening mechanism was discussed.The results reveal that the strengthening is mainly contributed by the precipitation ofβ″phase after two-stage aging,and the number density and size of the precipitates are significantly depended on the pre-aging time.The number density of precipitates is increased with the pre-aging time prolonged from 0 h to 4 h,and then decreases with the further increase of pre-aging time from 4 h to 6 h.The precipitates with the highest density and smallest size are observed after pre-aging for 4 h.After pre-aged at 100℃for 4 h and then artificial aged at 200℃for 30 min,the yield strength of 207 MPa,ultimate tensile strength of 325 MPa and elongation of 7.6%are achieved. 展开更多
关键词 high pressure die cast aluminum alloy microstructural heterogeneity mechanical properties precipitation strengthening two-stage aging
下载PDF
Effect of pressure on the feeding characteristics of ZCuZn16Si4 alloy
16
作者 Li Hailan Sun Xun +4 位作者 Zhang Shiyan Liu Xiaofu Qi Xiaobing Wang Penghua Yu Bo 《China Foundry》 SCIE CAS 2008年第2期92-94,共3页
The experimental and numerical simulation methods were employed to study the effect of pressure on the feeding characteristics of ZCuZn16Si4 alloy castings. The results proved that different pressures would lead to di... The experimental and numerical simulation methods were employed to study the effect of pressure on the feeding characteristics of ZCuZn16Si4 alloy castings. The results proved that different pressures would lead to different feeding distance of riser over a suitable pressure range, and the pressure can be used to greatly improve the feeding characteristics compared with gravity casting. It should be pointed out that current porosity criteria in the numerical simulation codes cannot yet be applied well enough to predict the porosity defects of low-pressure copper alloy castings. 展开更多
关键词 low pressure casting ZCuZn16Si4 alloy pressure feeding characteristics feeding distance
下载PDF
Construction of Micropiles Using Pressure Techniques
17
作者 Hussein Elarabi Amin Ahmed Abbas Soorkty 《Journal of Civil Engineering and Architecture》 2015年第1期45-50,共6页
This paper discusses the technique of casting concrete ofmicropiles with pressures and the consequence of comparisons with normal way of casting concrete (casting with gravity). Preliminary geotechnical studies have... This paper discusses the technique of casting concrete ofmicropiles with pressures and the consequence of comparisons with normal way of casting concrete (casting with gravity). Preliminary geotechnical studies have been made in specific area in Sudan to predict the soil parameters and then an experimental work has been done for an estimated number ofmicropiles with different diameters and different techniques of placing concrete with various amount of pressure. This study was carried out to learn the usefulness of this technique in the field of structural foundations in Sudan. Capacities of micropiles were compared in cases of non-pressure casting (normal way of casting concrete) and pressure casting. Through the results, it was found that the entry of pressure factor in the operation of casting concrete increases the capacities of micropiles. The increased value of ultimate load depends on the amount of pressure applied. 展开更多
关键词 MICROPILE load test pressure casting.
下载PDF
Study on Numerical Simulation of Mold Filling and Solidification Processes under Pressure Conditions 被引量:7
18
作者 ShoumeiXIONG BaichengLIU +1 位作者 LiangrongJIA XinghuoWEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期413-416,共4页
The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer... The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process. 展开更多
关键词 Mold filling SOLIDIFICATION Numerical simulation High pressure die casting Low pressure die casting
下载PDF
Semi-solid near-net shape rheocasting of heat treatable wrought aluminum alloys 被引量:10
19
作者 U.A.C URLE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1719-1724,共6页
Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commer... Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commercial 2024, 6082 and 7075 wrought aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield strength and elongation of rheocast 2024-T6 exceeded the minimum requirements of the wrought alloy in the T6 condition but the ultimate tensile strength achieved only 90% of the specification because the Mg content of the starting alloy was below the commercial alloy specification. The strengths of rheocast 6082-T6 exceeded all of the wrought alloy T6 strength targets but the elongation only managed 36% of the required minimum due to porosity, caused by incipient melting during solution heat treatment, and the presence of fine intermetallie needles in the eutectic. The yield strength of rheocast 7075 exceeded the required one and the ultimate tensile strength also managed 97% of the specification; while the elongation only reached 46% of the minimum requirement also due to incipient melting porosity caused during the solution heat treatment process. 展开更多
关键词 high pressure die casting (HPDC) aluminum alloys as-cast condition T6 treatment incipient melting
下载PDF
Rotary bending fatigue behavior of A356 –T6 aluminum alloys by vacuum pressurizing casting 被引量:5
20
作者 Yong-qin Liu Wan-qi Jie +3 位作者 Zhi-ming Gao Yong-jian Zheng Hai-jun Luo Wen-tao Song 《China Foundry》 SCIE CAS 2015年第5期326-332,共7页
Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigu... Vacuum pressurizing casting technique, providing better mould filling and inter-dendritic feeding, can reduce the porosity greatly in cast aluminum alloys, and improve the fatigue properties. The rotary bending fatigue properties of A356-T6 alloys prepared by vacuum pressurizing casting were investigated. The S-N curve and limit strength 90 MPa under fatigue life of 107 cycles were obtained. The analyses on the fatigue fractography and microstructure of specimens showed that the fatigue fracture mainly occurs at the positions with casting defects in the subsurface, especially at porosities regions, which attributed to the crack propagation during the fatigue fracture process. Using the empirical crack propagation law of Pairs-Erdogon, the quantitative relationship among the initial crack size, fatigue life and applied stress was established. The fatigue life decreases with an increase in initial crack size. Two constants in the Pairs-Erdogon equation of aluminum alloy A356-T6 were calculated using the experimental data. 展开更多
关键词 aluminum alloys vacuum pressurizing casting rotary bending fatigue porosity crack propagation
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部