As a kind of multi-physics imaging approach integrating the advantages of electrical impedance tomography and ul- trasound imaging with the improved spatial resolution and image contrast, magneto-acoustic tomography w...As a kind of multi-physics imaging approach integrating the advantages of electrical impedance tomography and ul- trasound imaging with the improved spatial resolution and image contrast, magneto-acoustic tomography with magnetic induction (MAT-MI) is demonstrated to have the capability of electrical impedance contrast imaging for biological tissues with conductivity differences. By being detected with a strong directional transducer, abrupt pressure change is proved to be generated by the gradient of the induced Lorentz force along the force direction at conductivity boundary. A simplified boundary normal pressure (BNP)-based conductivity reconstruction algorithm is proposed and the formula for conductivity distribution inside the object with the clear physical meaning of pressure derivative, is derived. Numerical simulations of acoustic pressure and conductivity reconstruction are conducted based on a 2-layer eccentric cylindrical phantom model using Hilbert transform. The reconstructed two-dimensional conductivity images accord well with the model, thus success- fully making up the deficiency of only imaging conductivity boundary in traditional MAT-MI. The proposed method is also demonstrated to have a spatial resolution of one wavelength. This study provides a new method of reconstructing accurate electrical conductivity and suggests the potential applications of MAT-MI in imaging biological tissues with conductivity difference.展开更多
In this paper, solutions to the 3D transient flow mathematical model for horizontal wells in box-rounded reservoirs are presented. The solutions are derived in Laplace transform domain by employing integral transform ...In this paper, solutions to the 3D transient flow mathematical model for horizontal wells in box-rounded reservoirs are presented. The solutions are derived in Laplace transform domain by employing integral transform and point-source superposition. Both efficient computation of pressure responses and practical technology of oil field application mentioned here may be used to interpret the data from unsteady-state horizontal well testing.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11474166 and 11604156)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161013)+1 种基金the Postdoctoral Science Foundation of China(Grant No.2016M591874)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘As a kind of multi-physics imaging approach integrating the advantages of electrical impedance tomography and ul- trasound imaging with the improved spatial resolution and image contrast, magneto-acoustic tomography with magnetic induction (MAT-MI) is demonstrated to have the capability of electrical impedance contrast imaging for biological tissues with conductivity differences. By being detected with a strong directional transducer, abrupt pressure change is proved to be generated by the gradient of the induced Lorentz force along the force direction at conductivity boundary. A simplified boundary normal pressure (BNP)-based conductivity reconstruction algorithm is proposed and the formula for conductivity distribution inside the object with the clear physical meaning of pressure derivative, is derived. Numerical simulations of acoustic pressure and conductivity reconstruction are conducted based on a 2-layer eccentric cylindrical phantom model using Hilbert transform. The reconstructed two-dimensional conductivity images accord well with the model, thus success- fully making up the deficiency of only imaging conductivity boundary in traditional MAT-MI. The proposed method is also demonstrated to have a spatial resolution of one wavelength. This study provides a new method of reconstructing accurate electrical conductivity and suggests the potential applications of MAT-MI in imaging biological tissues with conductivity difference.
文摘In this paper, solutions to the 3D transient flow mathematical model for horizontal wells in box-rounded reservoirs are presented. The solutions are derived in Laplace transform domain by employing integral transform and point-source superposition. Both efficient computation of pressure responses and practical technology of oil field application mentioned here may be used to interpret the data from unsteady-state horizontal well testing.