High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss h...This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.展开更多
The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the dist...The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.展开更多
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi...The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).展开更多
Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnos...Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnosis.However,traditional methods,involving elastomer film-based substrates or encapsulation techniques,often fall short due to mechanical mismatches,discomfort,lack of breathability,and limitations in sensing abilities.Consequently,there is a pressing need,yet it remains a significant challenge to create pressure sensors that are not only highly breathable,flexible,and comfortable but also sensitive,durable,and biocompatible.Herein,we present a biocompatible and breathable fabric-based pressure sensor,using nonwoven fabrics as both the sensing electrode(coated with MXene/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate[PEDOT:PSS])and the interdigitated electrode(printed with MXene pattern)via a scalable spray-coating and screen-coating technique.The resultant device exhibits commendable air permeability,biocompatibility,and pressure sensing performance,including a remarkable sensitivity(754.5 kPa^(−1)),rapid response/recovery time(180/110 ms),and robust cycling stability.Furthermore,the integration of PEDOT:PSS plays a crucial role in protecting the MXene nanosheets from oxidation,significantly enhancing the device's long-term durability.These outstanding features make this sensor highly suitable for applications in fullrange human activities detection and disease diagnosis.Our study underscores the promising future of flexible pressure sensors in the realm of intelligent wearable electronics,setting a new benchmark for the industry.展开更多
This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cy...This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional corrugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between circumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells.展开更多
All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,si...All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance.展开更多
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur...Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone.展开更多
Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibe...Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors.展开更多
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro...Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.展开更多
Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP lev...Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP levels have also been shown to closely impact hard endpoints such as mortality.Considering this,conducting an in-depth review ofΔP as a unique,outcome-impacting therapeutic modality is extremely important.There is a need to understand the subtleties involved in making sureΔP levels are optimized to enhance outcomes and minimize harm.We performed this narrative review to further explore the various uses ofΔP,the different parameters that can affect its use,and how outcomes vary in different patient populations at different pressure levels.To better utilizeΔP in MV-requiring patients,additional large-scale clinical studies are needed.展开更多
The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography a...The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.展开更多
Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the g...Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.展开更多
The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application i...The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.展开更多
Background:This study aimed to investigate the relationship between parental educational expectations and adolescent mental health problems,with academic pressure as a moderating variable.Methods:This study was based ...Background:This study aimed to investigate the relationship between parental educational expectations and adolescent mental health problems,with academic pressure as a moderating variable.Methods:This study was based on the baseline data of the China Education Panel Survey,which was collected within one school year during 2013–2014.It included 19,958 samples from seventh and ninth graders,who ranged from 11 to 18 years old.After removing missing values and conducting relevant data processing,the effective sample size for analysis was 16344.The OLS(Ordinary Least Squares)multiple linear regression analysis was used to examine the relationship between parental educational expectations,academic pressure,and adolescents’mental health problems.In addition,we established an interaction term between parents’educational expectations and academic pressure to investigate the moderating effect of academic stress.Results:The study found that adolescents whose parents had high educational expectations reported less mental health problems.(β=−0.195;p<0.001).Additionally,adolescents who had high academic pressure reported more mental health problems.(β=0.649;p<0.001).Furthermore,the study found that academic pressure had a significant moderating effect on the relationship between parental educational expectations and adolescents’mental health problems(β=0.082;p<0.001).Conclusion:Parental educational expectations had a close relationship with adolescents’mental health problems,and academic pressure moderated this relationship.For those adolescents with high levels of academic pressure,the association between high parental educational expectations and mental health problems became stronger.On the contrary,for those adolescents with low levels of academic pressure,the association between high parental educational expectations and mental health problems became weaker.These findings shed new light on how parental educational expectations affected adolescent mental health problems and had significant implications for their healthy development.展开更多
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
The corrosion performance of high pressure die-cast Al?6Si?3Ni (SN63) and Al-6Si-3Ni-2Cu (SNC632) alloys in 3.5%(mass fraction) NaCl solution was investigated. X-ray diffraction (XRD) and microstructural stu...The corrosion performance of high pressure die-cast Al?6Si?3Ni (SN63) and Al-6Si-3Ni-2Cu (SNC632) alloys in 3.5%(mass fraction) NaCl solution was investigated. X-ray diffraction (XRD) and microstructural studies revealed the presence of singlephase Si and binary Al3Ni/Al3Ni2 phases along the grain boundary. Besides, the single Cu phase was also identified at the grainboundaries of the SNC632 alloy. Electrochemical corrosion results revealed that, the SNC632 alloy exhibited nobler shift incorrosion potential (φcorr), lower corrosion current density (Jcorr) and higher corrosion resistance compared to the SN63 alloy.Equivalent circuit curve fitting analysis of electrochemical impedance spectroscopy (EIS) results revealed the existence of twointerfaces between the electrolyte and substrate. The surface layer and charge transfer resistance (Rct) of the SNC632 alloy was higherthan that of the SN63 alloy. Immersion corrosion test results also confirmed the lower corrosion rate of the SNC632 alloy andsubstantiated the electrochemical corrosion results. Cu addition improved the corrosion resistance, which was mainly attributed to theabsence of secondary Cu containing intermetallic phases in the SNC632 alloy and Cu presented as single phase.展开更多
Die casting process is widely applied in making Al parts. However, due to high speed of liquid metal flow in the die cavity, gases are prone to be entrapped in the filling, resulting in porosity defects. The X-ray com...Die casting process is widely applied in making Al parts. However, due to high speed of liquid metal flow in the die cavity, gases are prone to be entrapped in the filling, resulting in porosity defects. The X-ray computed tomography scanning technique was used to detect the pores in die-cast ADC12 alloys with different intensification pressures. The three-dimensional features of pores including pore size, number, sphericity have been obtained. The effect of different intensification pressures on two different kinds of pores, namely gas-pores and shrinkage pores, was analyzed. The results show that with increasing the pressure, the pore fractions and quantity gradually decrease. When the pressure increased to 85 MPa, the pores from gas entrapment during the mold filling were compressed, leading to a lower porosity fraction. The pressure cannot affect the pores in the samples with a thin wall (2 mm) due to a great solidification rate.展开更多
This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between the...This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.展开更多
Background:High blood pressure(BP)is a major contributor to mortality and cardiovascular diseases.Despite the known benefits of exercise for reducing BP,it is crucial to identify the most effective physical activity(P...Background:High blood pressure(BP)is a major contributor to mortality and cardiovascular diseases.Despite the known benefits of exercise for reducing BP,it is crucial to identify the most effective physical activity(PA)intervention.This systematic review and network meta-analysis(NMA)aimed to evaluate the available evidence on the effectiveness of various PA interventions for reducing BP and to determine their hierarchy based on their impact on BP.Methods:A search of PubMed,SPORTDiscus,PsycINFO,Web of Science,CINAHL,Cochrane,and Eric databases was conducted up to December 2022 for this systematic review and NMA.Randomized controlled trials and quasi-experimental studies targeting healthy children and adolescents aged 6-12 years old were included in this study.Only studies that compared controlled and intervention groups using PA or exercise as the major influence were included.We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines.Three independent investigators performed the literature screening,data extraction,and risk of bias assessment.We used Bayesian arm-based NMA to synthesize the data.The primary outcomes were systolic BP and diastolic BP.We calculated the mean differences(MDs)in systolic BP and diastolic BP before and after treatment.Mean treatment differences were estimated using NMA and random-effect models.Results:We synthesized 27 studies involving 15,220 children and adolescents.PA combined with nutrition and behavior change was the most effective intervention for reducing both systolic BP and diastolic BP(MD=-8.64,95%credible interval(95%CI):-11.44 to-5.84;MD=-6.75,95%CI:-10.44 to-3.11),followed by interventions with multiple components(MD=-1.39,95%CI:-1.94 to-0.84;MD=-2.54,95%CI:-4.89 to-0.29).Conclusion:Our findings suggest that PA interventions incorporating nutrition and behavior change,followed by interventions with multiple components,are most effective for reducing both systolic BP and diastolic BP in children and adolescents.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
文摘This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.
基金funded by the Innovation Fund for Outstanding Scholar of Henan Province(No.0621000700)
文摘The FDM numerical simulation software,ViewCast system,was employed to simulate the low pressure die casting(LPDC)of an aluminum wheel.By analyzing the mold-filling and solidification stage of the LPDC process,the distribution of liquid fraction,temperature field and solidification pattern of castings were studied.The potential shrinkage defects were predicted to be formed at the rim/spoke junctions,which is in consistence with the X-ray detection result.The distribution pattern of the defects has also been studied.A solution towards reducing such defects has been presented.The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold.Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.
基金financially supported by the National Key Research and Development Program of China(2022YFB3404201)the Major Science and Technology Project of Changchun City,Jilin Province(Grant No.20210301024GX)。
文摘The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).
基金supported by the National Natural Science Foundation of China(52303051,52202108,52003002)Anhui Provincial Natural Science Foundation(2308085ME146,2008085QE213)+3 种基金Educational Commission of Anhui Province of China(2022AH040137)Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province(ZD04)Opening Fund of China National Textile and Apparel Council Key Laboratory of Flexible Devices for Intelligent Textile and Apparel,Soochow University(SDHY2227)research funding from Anhui Polytechnic University(2020YQQ002,Xjky2022070,FFBK202218,FFBK202363,FFBK202364,2020ffky01).
文摘Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnosis.However,traditional methods,involving elastomer film-based substrates or encapsulation techniques,often fall short due to mechanical mismatches,discomfort,lack of breathability,and limitations in sensing abilities.Consequently,there is a pressing need,yet it remains a significant challenge to create pressure sensors that are not only highly breathable,flexible,and comfortable but also sensitive,durable,and biocompatible.Herein,we present a biocompatible and breathable fabric-based pressure sensor,using nonwoven fabrics as both the sensing electrode(coated with MXene/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate[PEDOT:PSS])and the interdigitated electrode(printed with MXene pattern)via a scalable spray-coating and screen-coating technique.The resultant device exhibits commendable air permeability,biocompatibility,and pressure sensing performance,including a remarkable sensitivity(754.5 kPa^(−1)),rapid response/recovery time(180/110 ms),and robust cycling stability.Furthermore,the integration of PEDOT:PSS plays a crucial role in protecting the MXene nanosheets from oxidation,significantly enhancing the device's long-term durability.These outstanding features make this sensor highly suitable for applications in fullrange human activities detection and disease diagnosis.Our study underscores the promising future of flexible pressure sensors in the realm of intelligent wearable electronics,setting a new benchmark for the industry.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFB2602800)the National Natural Science Foundation of China(Grant Nos.51879231,51679214)。
文摘This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional corrugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between circumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells.
基金supported by National Key Research and Development Program of China(No.2021YFF0500600)Key R&D Projects in Henan Province(221111240100)China Postdoctoral Science Foundation(2022TQ0291 and 2022M712869)
文摘All-solid-state lithium metal batteries(ASSLMBs)with solid electrolytes(SEs)have emerged as a promising alternative to liquid electrolyte-based Li-ion batteries due to their higher energy density and safety.However,since ASSLMBs lack the wetting properties of liquid electrolytes,they require stacking pressure to prevent contact loss between electrodes and SEs.Though previous studies showed that stacking pressure could impact certain performance aspects,a comprehensive investigation into the effects of stacking pressure has not been conducted.To address this gap,we utilized the Li_(6)PS_(5)Cl solid electrolyte as a reference and investigated the effects of stacking pressures on the performance of SEs and ASSLMBs.We also developed models to explain the underlying origin of these effects and predict battery performance,such as ionic conductivity and critical current density.Our results demonstrated that an appropriate stacking pressure is necessary to achieve optimal performance,and each step of applying pressure requires a specific pressure value.These findings can help explain discrepancies in the literature and provide guidance to establish standardized testing conditions and reporting benchmarks for ASSLMBs.Overall,this study contributes to the understanding of the impact of stacking pressure on the performance of ASSLMBs and highlights the importance of careful pressure optimization for optimal battery performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20234 and 42277170)Hubei Province Key Research and Development Project(Grant No.2023BCB121).
文摘Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone.
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Nos.52071280 and 51972280)the Natural Science Foundation of Hebei Province,China(Nos.E2020203151 and E2022203208)+1 种基金the Research Program of the College Science&Technology of Hebei Province,China(No.ZD2020121)the Cultivation Project for Basic Research and Innovation of Yanshan University,China(No.2021LGZD016).
文摘Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors.
基金supported by the Doctoral Research Foundation of Bohai University (05013/0520bs006)the Science and Technology Project of“Unveiling and Commanding”Liaoning Province (2021JH1/10400033)the Scientific Research Project from Education Department of Liaoning Province (LJ2020010)。
文摘Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods.
文摘Driving pressure(ΔP)is a core therapeutic component of mechanical ventilation(MV).Varying levels ofΔP have been employed during MV depending on the type of underlying pathology and severity of injury.However,ΔP levels have also been shown to closely impact hard endpoints such as mortality.Considering this,conducting an in-depth review ofΔP as a unique,outcome-impacting therapeutic modality is extremely important.There is a need to understand the subtleties involved in making sureΔP levels are optimized to enhance outcomes and minimize harm.We performed this narrative review to further explore the various uses ofΔP,the different parameters that can affect its use,and how outcomes vary in different patient populations at different pressure levels.To better utilizeΔP in MV-requiring patients,additional large-scale clinical studies are needed.
文摘The evaluation of reservoir quality was accomplished on the Late Paleocene to Early Eocene Narimba Formation in Bass Basin,Australia.This study involved combination methods such as petrophysical analysis,petrography and sedimentological studies,reservoir quality and fluid flow units from derivative parameters,and capillary pressure and wetting fluid saturation relationship.Textural and diagenetic features are affecting the reservoir quality.Cementation,compaction,and presence of clay minerals such as kaolinite are found to reduce the quality while dissolution and secondary porosity are noticed to improve it.It is believed that the Narimba Formation is a potential reservoir with a wide range of porosity and permeability.Porosity ranges from 3.1%to 25.4%with a mean of 15.84%,while permeability ranges between 0.01 mD and 510 mD,with a mean of 31.05 mD.Based on the heterogenous lithology,the formation has been categorized into five groups based on permeability variations.Group I showed an excellent to good quality reservoir with coarse grains.The impacts of both textural and diagenetic features improve the reservoir and producing higher reservoir quality index(RQI)and flow zone indicators(FZI)as well as mostly mega pores.The non-wetting fluid migration has the higher possibility to flow in the formation while displacement pressure recorded as zero.Group II showed a fair quality reservoir with lower petrophysical properties in macro pores.The irreducible water saturation is increasing while the textural and digenetic properties are still enhancing the reservoir quality.Group III reflects lower quality reservoir with mostly macro pores and higher displacement pressure.It may indicate smaller grain size and increasing amount of cement and clay minerals.Group IV,and V are interpreted as a poor-quality reservoir that has lower RQI and FZI.The textural and digenetic features are negatively affecting the reservoir and are leading to smaller pore size and pore throat radii(r35)values to be within the range of macro,meso-,micro-,and nano pores.The capillary displacement pressure curves of the three groups show increases reaching the maximum value of 400 psia in group V.Agreement with the classification of permeability,r35 values,and pore type can be used in identifying the quality of reservoir.
基金funded by the National Natural Science Foundation of China(General Program:No.52074314,No.U19B6003-05)National Key Research and Development Program of China(2019YFA0708303-05)。
文摘Accurate prediction of formation pore pressure is essential to predict fluid flow and manage hydrocarbon production in petroleum engineering.Recent deep learning technique has been receiving more interest due to the great potential to deal with pore pressure prediction.However,most of the traditional deep learning models are less efficient to address generalization problems.To fill this technical gap,in this work,we developed a new adaptive physics-informed deep learning model with high generalization capability to predict pore pressure values directly from seismic data.Specifically,the new model,named CGP-NN,consists of a novel parametric features extraction approach(1DCPP),a stacked multilayer gated recurrent model(multilayer GRU),and an adaptive physics-informed loss function.Through machine training,the developed model can automatically select the optimal physical model to constrain the results for each pore pressure prediction.The CGP-NN model has the best generalization when the physicsrelated metricλ=0.5.A hybrid approach combining Eaton and Bowers methods is also proposed to build machine-learnable labels for solving the problem of few labels.To validate the developed model and methodology,a case study on a complex reservoir in Tarim Basin was further performed to demonstrate the high accuracy on the pore pressure prediction of new wells along with the strong generalization ability.The adaptive physics-informed deep learning approach presented here has potential application in the prediction of pore pressures coupled with multiple genesis mechanisms using seismic data.
基金the support of the National Natural Science Foundation of China grant number 51776175。
文摘The regulation of the burning rate pressure exponent for the ammonium perchlorate/hydroxylterminated polybutadiene/aluminum(AP/HTPB/Al)composite propellants under high pressures is a crucial step for its application in high-pressure solid rocket motors.In this work,the combustion characteristics of AP/HTPB/Al composite propellants containing ferrocene-based catalysts were investigated,including the burning rate,thermal behavior,the local heat transfer,and temperature profile in the range of 7-28 MPa.The results showed that the exponent breaks were still observed in the propellants after the addition of positive catalysts(Ce-Fc-MOF),the burning rate inhibitor((Ferrocenylmethyl)trimethylammonium bromide,Fc Br)and the mixture of Fc Br/catocene(GFP).However,the characteristic pressure has increased,and the exponent decreased from 1.14 to 0.66,0.55,and 0.48 when the addition of Ce-FcMOF,Fc Br and Fc Br/GFP in the propellants.In addition,the temperature in the first decomposition stage was increased by 7.50℃ and 11.40℃ for the AP/Fc Br mixture and the AP/Fc Br/GFP mixture,respectively,compared to the pure AP.On the other hand,the temperature in the second decomposition stage decreased by 48.30℃ and 81.70℃ for AP/Fc Br and AP/Fc Br/GFP mixtures,respectively.It was also found that Fc Br might generate ammonia to cover the AP surface.In this case,a reaction between the methyl in Fc Br and perchloric acid caused more ammonia to appear at the AP surface,resulting in the suppression of ammonia desorption.In addition,the coarse AP particles on the quenched surface were of a concave shape relative to the binder matrix under low and high pressures when the catalysts were added.In the process,the decline at the AP/HTPB interface was only exhibited in the propellant with the addition of Ce-Fc-MOF.The ratio of the gas-phase temperature gradient of the propellants containing catalysts was reduced significantly below and above the characteristic pressure,rather than 3.6 times of the difference in the blank propellant.Overall,the obtained results demonstrated that the pressure exponent could be effectively regulated and controlled by adjusting the propellant local heat and mass transfer under high and low pressures.
基金the National Planning Office of Philosophy and Social Science,China (Grant Numbers 18ZDA133 & 23BSH105)ChinaAssociation of Higher Education (Grant Number 23LH0418).
文摘Background:This study aimed to investigate the relationship between parental educational expectations and adolescent mental health problems,with academic pressure as a moderating variable.Methods:This study was based on the baseline data of the China Education Panel Survey,which was collected within one school year during 2013–2014.It included 19,958 samples from seventh and ninth graders,who ranged from 11 to 18 years old.After removing missing values and conducting relevant data processing,the effective sample size for analysis was 16344.The OLS(Ordinary Least Squares)multiple linear regression analysis was used to examine the relationship between parental educational expectations,academic pressure,and adolescents’mental health problems.In addition,we established an interaction term between parents’educational expectations and academic pressure to investigate the moderating effect of academic stress.Results:The study found that adolescents whose parents had high educational expectations reported less mental health problems.(β=−0.195;p<0.001).Additionally,adolescents who had high academic pressure reported more mental health problems.(β=0.649;p<0.001).Furthermore,the study found that academic pressure had a significant moderating effect on the relationship between parental educational expectations and adolescents’mental health problems(β=0.082;p<0.001).Conclusion:Parental educational expectations had a close relationship with adolescents’mental health problems,and academic pressure moderated this relationship.For those adolescents with high levels of academic pressure,the association between high parental educational expectations and mental health problems became stronger.On the contrary,for those adolescents with low levels of academic pressure,the association between high parental educational expectations and mental health problems became weaker.These findings shed new light on how parental educational expectations affected adolescent mental health problems and had significant implications for their healthy development.
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
基金financially supported by the World Class 300 R&D Program (S2404600)funded by the Small Business Administration of Korea through the Research Institute of Advanced Materials (041720170037)Magnesium Technology Innovation Center
文摘The corrosion performance of high pressure die-cast Al?6Si?3Ni (SN63) and Al-6Si-3Ni-2Cu (SNC632) alloys in 3.5%(mass fraction) NaCl solution was investigated. X-ray diffraction (XRD) and microstructural studies revealed the presence of singlephase Si and binary Al3Ni/Al3Ni2 phases along the grain boundary. Besides, the single Cu phase was also identified at the grainboundaries of the SNC632 alloy. Electrochemical corrosion results revealed that, the SNC632 alloy exhibited nobler shift incorrosion potential (φcorr), lower corrosion current density (Jcorr) and higher corrosion resistance compared to the SN63 alloy.Equivalent circuit curve fitting analysis of electrochemical impedance spectroscopy (EIS) results revealed the existence of twointerfaces between the electrolyte and substrate. The surface layer and charge transfer resistance (Rct) of the SNC632 alloy was higherthan that of the SN63 alloy. Immersion corrosion test results also confirmed the lower corrosion rate of the SNC632 alloy andsubstantiated the electrochemical corrosion results. Cu addition improved the corrosion resistance, which was mainly attributed to theabsence of secondary Cu containing intermetallic phases in the SNC632 alloy and Cu presented as single phase.
基金financially supported by the Industry Base Enhanced Project(TC160A310-10-01),China
文摘Die casting process is widely applied in making Al parts. However, due to high speed of liquid metal flow in the die cavity, gases are prone to be entrapped in the filling, resulting in porosity defects. The X-ray computed tomography scanning technique was used to detect the pores in die-cast ADC12 alloys with different intensification pressures. The three-dimensional features of pores including pore size, number, sphericity have been obtained. The effect of different intensification pressures on two different kinds of pores, namely gas-pores and shrinkage pores, was analyzed. The results show that with increasing the pressure, the pore fractions and quantity gradually decrease. When the pressure increased to 85 MPa, the pores from gas entrapment during the mold filling were compressed, leading to a lower porosity fraction. The pressure cannot affect the pores in the samples with a thin wall (2 mm) due to a great solidification rate.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52378365 and 52179109)Jiangsu Province Excellent Postdoctoral Program(Grant No.2023)China Scholarship Council-University of Ottawa Joint Scholarship.
文摘This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.
文摘Background:High blood pressure(BP)is a major contributor to mortality and cardiovascular diseases.Despite the known benefits of exercise for reducing BP,it is crucial to identify the most effective physical activity(PA)intervention.This systematic review and network meta-analysis(NMA)aimed to evaluate the available evidence on the effectiveness of various PA interventions for reducing BP and to determine their hierarchy based on their impact on BP.Methods:A search of PubMed,SPORTDiscus,PsycINFO,Web of Science,CINAHL,Cochrane,and Eric databases was conducted up to December 2022 for this systematic review and NMA.Randomized controlled trials and quasi-experimental studies targeting healthy children and adolescents aged 6-12 years old were included in this study.Only studies that compared controlled and intervention groups using PA or exercise as the major influence were included.We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines.Three independent investigators performed the literature screening,data extraction,and risk of bias assessment.We used Bayesian arm-based NMA to synthesize the data.The primary outcomes were systolic BP and diastolic BP.We calculated the mean differences(MDs)in systolic BP and diastolic BP before and after treatment.Mean treatment differences were estimated using NMA and random-effect models.Results:We synthesized 27 studies involving 15,220 children and adolescents.PA combined with nutrition and behavior change was the most effective intervention for reducing both systolic BP and diastolic BP(MD=-8.64,95%credible interval(95%CI):-11.44 to-5.84;MD=-6.75,95%CI:-10.44 to-3.11),followed by interventions with multiple components(MD=-1.39,95%CI:-1.94 to-0.84;MD=-2.54,95%CI:-4.89 to-0.29).Conclusion:Our findings suggest that PA interventions incorporating nutrition and behavior change,followed by interventions with multiple components,are most effective for reducing both systolic BP and diastolic BP in children and adolescents.