This paper presents an experimental study of the self-sustained transonic shock oscillating behaviors in a heavy-duty gas turbine compressor cascade under the inlet Mach number of 0.85,0.90 and 0.95.The transonic shoc...This paper presents an experimental study of the self-sustained transonic shock oscillating behaviors in a heavy-duty gas turbine compressor cascade under the inlet Mach number of 0.85,0.90 and 0.95.The transonic shock patterns and the surface flow structures are captured by schlieren imaging and oil flow visualization.The time-averaged and instantaneous transonic shock oscillating behaviors at the near choke point and the near stall point are investigated by the Anodized Aluminum Pressure-Sensitive Paint(AA-PSP)surface pressure measurement.The normal passage shock dominant pattern and the detached bow shock dominant pattern at the near choke point and the near stall point are experimental characterized,respectively.The passage shock oscillation behaviors at the near choke point have been observed to undergo periodic pressure perturbations of the shock shift between the upstreamλshock feet mode and the downstreamλshock feet mode.The detached bow shock oscillation behaviors at the near stall point have been observed to undergo the pressure perturbations of the shock cycle movement between the upstream detached bow shock mode and the downstream detached bow shock mode.The differences between the shock shift mode and the shock cycle movement mode lead to the different streamwise oscillation travel ranges and different shock intensity variations under the same inlet Mach number.展开更多
基金financially supported by the National Science and Technology Major Project(2017-Ⅱ-0007-0021)。
文摘This paper presents an experimental study of the self-sustained transonic shock oscillating behaviors in a heavy-duty gas turbine compressor cascade under the inlet Mach number of 0.85,0.90 and 0.95.The transonic shock patterns and the surface flow structures are captured by schlieren imaging and oil flow visualization.The time-averaged and instantaneous transonic shock oscillating behaviors at the near choke point and the near stall point are investigated by the Anodized Aluminum Pressure-Sensitive Paint(AA-PSP)surface pressure measurement.The normal passage shock dominant pattern and the detached bow shock dominant pattern at the near choke point and the near stall point are experimental characterized,respectively.The passage shock oscillation behaviors at the near choke point have been observed to undergo periodic pressure perturbations of the shock shift between the upstreamλshock feet mode and the downstreamλshock feet mode.The detached bow shock oscillation behaviors at the near stall point have been observed to undergo the pressure perturbations of the shock cycle movement between the upstream detached bow shock mode and the downstream detached bow shock mode.The differences between the shock shift mode and the shock cycle movement mode lead to the different streamwise oscillation travel ranges and different shock intensity variations under the same inlet Mach number.