Independent of traditional approach of satellite altimeter calibration, the feasibility of altimeter validation using tide gauge located on solitary island at open sea (TGSI) and deep-ocean bottom pressure recorder (D...Independent of traditional approach of satellite altimeter calibration, the feasibility of altimeter validation using tide gauge located on solitary island at open sea (TGSI) and deep-ocean bottom pressure recorder (DBPR) separately is initially studied. Bias of Jason-3 sea surface height (SSH) and relative SSH bias (Δbias) between Jason-2 and Jason-3 is calculated using the data of tide gauge on Harvest oil platform, tide gauge No. 1890000 and DBPR No. 21419. The standard deviations of calculated SSH bias sequence are 3.98 cm, 2.87 cm and 8.61 cm respectively, and Δbias (Jason-3—Jason-2) is -3.62± 2.17 cm , -2.58±1.97 cm and -2.60±1.30 cm respectively. Comparing to the results reported by international calibration sites, the results show that Jason-3 SSH is 3.0 cm lower than that of Jason-2, the selected DBPR is appropriate to the calculation of relative SSH bias between Jason-2 and Jason-3, but it is not suitable for calibration or validation of single satellite, TGSI is appropriate to both.展开更多
基金National Natural Science Foundation of China(No.41774018,41674082)Foundation of State Key Laboratory of Geo-information Engineering(No.SKLGIE2018-ZZ-4)。
文摘Independent of traditional approach of satellite altimeter calibration, the feasibility of altimeter validation using tide gauge located on solitary island at open sea (TGSI) and deep-ocean bottom pressure recorder (DBPR) separately is initially studied. Bias of Jason-3 sea surface height (SSH) and relative SSH bias (Δbias) between Jason-2 and Jason-3 is calculated using the data of tide gauge on Harvest oil platform, tide gauge No. 1890000 and DBPR No. 21419. The standard deviations of calculated SSH bias sequence are 3.98 cm, 2.87 cm and 8.61 cm respectively, and Δbias (Jason-3—Jason-2) is -3.62± 2.17 cm , -2.58±1.97 cm and -2.60±1.30 cm respectively. Comparing to the results reported by international calibration sites, the results show that Jason-3 SSH is 3.0 cm lower than that of Jason-2, the selected DBPR is appropriate to the calculation of relative SSH bias between Jason-2 and Jason-3, but it is not suitable for calibration or validation of single satellite, TGSI is appropriate to both.