期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimization of pressurization process in low-pressure casting of a 5.4-ton gigantic C95800 copper alloy casting
1
作者 Zi-ao Qiu Xin-yi Zhao +9 位作者 Chao-jun Zhang Jun-liu Yang Rui-yun Shi Tang-qi Lü Xiao-lei Yu Qiu-shi Chen Lin-lin Quan Lun-yong Zhang Fu-yang Cao Jian-fei Sun 《China Foundry》 SCIE EI CAS CSCD 2024年第6期717-726,共10页
During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity... During the low-pressure casting of extra-large size C95800 copper alloy components,traditional linear pressurization technique leads to a rapid surge of liquid metal inlet velocity at the regions where the mold cavity cross-section enlarges.This rapid increasement of liquid metal inlet velocity causes serious entrapment of gas and oxide films,and results in various casting defects such as the bifilm defects.These defects detrimentally deteriorate mechanical properties of the castings.To address this issue,an innovative nonlinear pressurization strategy timely matching to the casting structure was proposed.The pressurization rate decreases at sections where the cross-section widens,but it gradually increases as the liquid metal level rises.By this way,the inlet velocity remains below a critical threshold to prevent the entrapment of gas and oxide films.Comparative analyses involving numerical simulations and casting verification illustrate that the nonlinear pressurization technique,compared to the linear pressurization,effectively diminishes both the size and number of bifilm defects.Furthermore,the nonlinear pressurization method enhances the casting yield strength by 10%,tensile strength by 14%,and elongation by 10%.Examination through scanning electron microscopy highlights that the bifilm defects arising from the linear pressurization process result in the reduction of the castings’mechanical properties.These observations underscore the efficacy of nonlinear pressurization in enhancing the quality and reliability of gigantic castings,as exemplified by a 5.4-ton extra-large sized C95800 copper alloy propeller hub with complex structures in the current study. 展开更多
关键词 gigantic copper alloy casting C95800 low-pressure casting nonlinear pressurization process
下载PDF
PRESSURE FORCE CONTROL FOR FABRICATION OF PLASTIC MICROFLUIDIC CHIPS WITH HOT EMBOSSING METHOD
2
作者 LIU Chong LIAO Junfeng +1 位作者 WANG Xiaodong WANG Liding 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期107-110,共4页
A pressure force control system for hot embossing of microfluidic chips is designed with a moment motor and a ball bearing lead screw. Based on the numeric PID technique, the algorithm of pulsant integral accelerated ... A pressure force control system for hot embossing of microfluidic chips is designed with a moment motor and a ball bearing lead screw. Based on the numeric PID technique, the algorithm of pulsant integral accelerated PID control is presented and the negative effects of nonlinearity from friction, clearance and saturation are eliminated. In order to improve the quick-resixmse characteristic, independent thread technique is adopted. The method of pressure force control based on pulsant integral accelerated PID control and independent thread technique is applied with satisfactory control performance. 展开更多
关键词 Microfluidic chip Hot embossing pressure force control nonlinearity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部