Utilizing a bespoke CO_(2) phase transition pulse pressure experimental system,we conducted pulse pressure characterization tests across various activator masses,CO_(2) filling pressures,and energy discharge plate thi...Utilizing a bespoke CO_(2) phase transition pulse pressure experimental system,we conducted pulse pressure characterization tests across various activator masses,CO_(2) filling pressures,and energy discharge plate thick-nesses.This approach enabled us to ascertain the pulse pressure's response characteristics and variation patterns under diverse conditions.The formula for calculating the peak supercritical CO_(2) pulse pressure was deduced by modeling the ultimate load calculation of the clamped circular plate,and then the time-course expression of the supercritical CO_(2) phase transition pulse pressure and energy was carried out by introducing the time factor and taking into account the parameters of the activator mass and the thickness of the energy discharging plate.Our findings reveal a four-stage pressure evolution in the cracking tube during initiation:a gradual increase,a rapid spike,swift attenuation,and eventual negative pressure formation.The activator mass and discharge plate thickness critically influence the peak pressure's timing and magnitude.Specifically,increased activator mass hastens peak pressure onset,while a thicker discharge plate amplifies it.The errors between calculated and experimental values for peak supercritical CO_(2) phase transition pressure fall within5%–5%.Furthermore,the pressure peak and arrival time model demonstrates less than 10%error compared to experimental data,affirming its strong applicability.These insights offer theoretical guidance for controlling phase transition pressure and optimizing energy in supercritical CO_(2) systems.展开更多
基金supported by the National Natural Science Foundation of China(Project Number 41907261)Natural Science Foundation of Chongqing Municipality(Project Number CSTB2023NSCQ-MSX0913)Chongqing Graduate Student Research Innovation Project(Project Number CYB23253).
文摘Utilizing a bespoke CO_(2) phase transition pulse pressure experimental system,we conducted pulse pressure characterization tests across various activator masses,CO_(2) filling pressures,and energy discharge plate thick-nesses.This approach enabled us to ascertain the pulse pressure's response characteristics and variation patterns under diverse conditions.The formula for calculating the peak supercritical CO_(2) pulse pressure was deduced by modeling the ultimate load calculation of the clamped circular plate,and then the time-course expression of the supercritical CO_(2) phase transition pulse pressure and energy was carried out by introducing the time factor and taking into account the parameters of the activator mass and the thickness of the energy discharging plate.Our findings reveal a four-stage pressure evolution in the cracking tube during initiation:a gradual increase,a rapid spike,swift attenuation,and eventual negative pressure formation.The activator mass and discharge plate thickness critically influence the peak pressure's timing and magnitude.Specifically,increased activator mass hastens peak pressure onset,while a thicker discharge plate amplifies it.The errors between calculated and experimental values for peak supercritical CO_(2) phase transition pressure fall within5%–5%.Furthermore,the pressure peak and arrival time model demonstrates less than 10%error compared to experimental data,affirming its strong applicability.These insights offer theoretical guidance for controlling phase transition pressure and optimizing energy in supercritical CO_(2) systems.