Global pressure distribution on the suction surface of a single vane in a transonic cascade wind tunnel is measured with the help of intensity-based pressure-sensitive paint (PSP) technique using a type of temperature...Global pressure distribution on the suction surface of a single vane in a transonic cascade wind tunnel is measured with the help of intensity-based pressure-sensitive paint (PSP) technique using a type of temperature-insensitive fluorescent paint and a self-made measurement system. This measurement is conducted at the outlet of the cascade wind tunnel at the Mach numbers 0.3 and 0.4, attack angle about –20°, ambient pressure 95.4 kPa and temperature 15 °C. The vane under study owns a large camber angle of ...展开更多
An optical-based technique using Pressure-Sensitive Paint(PSP) is a promising method to measure the distribution of surface pressure on an aerodynamic model. The static and dynamic characteristics of a fast-response...An optical-based technique using Pressure-Sensitive Paint(PSP) is a promising method to measure the distribution of surface pressure on an aerodynamic model. The static and dynamic characteristics of a fast-response PSP that is developed in the Chinese Academy of Sciences(CAS)are analyzed and tested to serve as the basis for experiments on unsteady surface measurement using a fast-response PSP. Two calibration systems used for this study are set up to investigate the temperature dependency, response time, and resolution. A data processing method, used for dynamic data, is analyzed and selected carefully to determine the optimum signal. Results show that the fastresponse PSP can be used normally at temperatures from 25 ℃ to 80 ℃. The effect of temperature on the accuracy of the measurement must be considered when temperatures are beyond the temperature range of 30–40 ℃. The dynamic calibration device with a solenoid valve can achieve a pressure jump within a millisecond order. The resolution is determined by the signal-to-noise ratio of the photo-multiplier tube. Results of the measurement show that the response time of the PSP decreases with a large pressure variation, and the response time is below 0.016 s when the pressure variation is under 40 kPa.展开更多
Pressure Sensitive Paint(PSP)technique has been increasingly applied to the experimental research of aerodynamics and thermodynamics due to its strengths of non-contact,high resolution results and large coverage area,...Pressure Sensitive Paint(PSP)technique has been increasingly applied to the experimental research of aerodynamics and thermodynamics due to its strengths of non-contact,high resolution results and large coverage area,etc.However,rarely has this technique been successfully used to the study of internal flow such as compressor cascade,since narrow flow passages would heavily restrict the acquisition of PSP images.In this paper,PSP technique was used to study the pressure distribution on a linear compressor cascade with large solidity of 2.3,where the view of recording camera can be heavily blocked due to adjacent blade surfaces.To help get integrated PSP images of the internal flow passage,dual camera system along with image processing tools like 3D reconstruction and image integration were adopted.The results showed that with the aid of such assistance,image results with good quality and readability could be obtained.Meanwhile,pressure data given by PSP were compared with data from traditional way of pressure taps and showed good consistency.Massive results of the entire cascade passage surface were given with different inlet Mach numbers and incidence angles.The results showed that PSP technique can integrally measure cascade tunnel of large solidity with the help of dual-camera system.展开更多
The thermal stability of sprayable fast-responding Pressure-Sensitive Paint(fast PSP)was investigated to explore the possibility for application in turbomachinery and hypersonic research with temperature above 100℃.T...The thermal stability of sprayable fast-responding Pressure-Sensitive Paint(fast PSP)was investigated to explore the possibility for application in turbomachinery and hypersonic research with temperature above 100℃.The first part of the study focused on a widely-used Polymer Ceramic PSP(PC-PSP).The effects of thermal degradation on its key sensing properties,including luminescent intensity,pressure sensitivity and response time,were examined for a temperature range from 60 to 100℃.Severe degradation in intensity and pressure sensitivity was found as temperature reached 70℃or higher,which would cause failure of PSP application in these conditions.Subsequently,a fast-responding Mesoporous-Particle PSP(MP-PSP)was developed which did not show degradation effects until 140℃.The greatly improved thermal stability of MP-PSP was attributed to:selection of polymer with higher glass transition temperature(polystyrene)to delay the saturation effect of oxygen quenching as temperature increased;porous and hollow structure of particles for luminophore deposition that minimizes polymer–luminophore interaction.This new paint formulation has significantly raised the upper temperature limit of fast PSP and offers more opportunities for applications in harsh environment.展开更多
基金National Natural Science Foundation of China (50476071, 10577020)
文摘Global pressure distribution on the suction surface of a single vane in a transonic cascade wind tunnel is measured with the help of intensity-based pressure-sensitive paint (PSP) technique using a type of temperature-insensitive fluorescent paint and a self-made measurement system. This measurement is conducted at the outlet of the cascade wind tunnel at the Mach numbers 0.3 and 0.4, attack angle about –20°, ambient pressure 95.4 kPa and temperature 15 °C. The vane under study owns a large camber angle of ...
基金cosupported by the ‘‘111 Project” of China (No.B17037)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University of China (No.CX201713)the National Natural Science Foundation of China (No.51476132)
文摘An optical-based technique using Pressure-Sensitive Paint(PSP) is a promising method to measure the distribution of surface pressure on an aerodynamic model. The static and dynamic characteristics of a fast-response PSP that is developed in the Chinese Academy of Sciences(CAS)are analyzed and tested to serve as the basis for experiments on unsteady surface measurement using a fast-response PSP. Two calibration systems used for this study are set up to investigate the temperature dependency, response time, and resolution. A data processing method, used for dynamic data, is analyzed and selected carefully to determine the optimum signal. Results show that the fastresponse PSP can be used normally at temperatures from 25 ℃ to 80 ℃. The effect of temperature on the accuracy of the measurement must be considered when temperatures are beyond the temperature range of 30–40 ℃. The dynamic calibration device with a solenoid valve can achieve a pressure jump within a millisecond order. The resolution is determined by the signal-to-noise ratio of the photo-multiplier tube. Results of the measurement show that the response time of the PSP decreases with a large pressure variation, and the response time is below 0.016 s when the pressure variation is under 40 kPa.
基金This study was co-supported by the National Natural Science Foundation of China(No.51790512)the Ministry of Education of the People's Republic of China(111 Project,No.B17037).
文摘Pressure Sensitive Paint(PSP)technique has been increasingly applied to the experimental research of aerodynamics and thermodynamics due to its strengths of non-contact,high resolution results and large coverage area,etc.However,rarely has this technique been successfully used to the study of internal flow such as compressor cascade,since narrow flow passages would heavily restrict the acquisition of PSP images.In this paper,PSP technique was used to study the pressure distribution on a linear compressor cascade with large solidity of 2.3,where the view of recording camera can be heavily blocked due to adjacent blade surfaces.To help get integrated PSP images of the internal flow passage,dual camera system along with image processing tools like 3D reconstruction and image integration were adopted.The results showed that with the aid of such assistance,image results with good quality and readability could be obtained.Meanwhile,pressure data given by PSP were compared with data from traditional way of pressure taps and showed good consistency.Massive results of the entire cascade passage surface were given with different inlet Mach numbers and incidence angles.The results showed that PSP technique can integrally measure cascade tunnel of large solidity with the help of dual-camera system.
基金supported by the National Natural Science Foundation of China(Nos.:11872038 and 11725209)funding from Gas Turbine Research Institute of Shanghai Jiao Tong University。
文摘The thermal stability of sprayable fast-responding Pressure-Sensitive Paint(fast PSP)was investigated to explore the possibility for application in turbomachinery and hypersonic research with temperature above 100℃.The first part of the study focused on a widely-used Polymer Ceramic PSP(PC-PSP).The effects of thermal degradation on its key sensing properties,including luminescent intensity,pressure sensitivity and response time,were examined for a temperature range from 60 to 100℃.Severe degradation in intensity and pressure sensitivity was found as temperature reached 70℃or higher,which would cause failure of PSP application in these conditions.Subsequently,a fast-responding Mesoporous-Particle PSP(MP-PSP)was developed which did not show degradation effects until 140℃.The greatly improved thermal stability of MP-PSP was attributed to:selection of polymer with higher glass transition temperature(polystyrene)to delay the saturation effect of oxygen quenching as temperature increased;porous and hollow structure of particles for luminophore deposition that minimizes polymer–luminophore interaction.This new paint formulation has significantly raised the upper temperature limit of fast PSP and offers more opportunities for applications in harsh environment.