Using pressure swing adsorption (PSA) technology to purify carbon monoxide (CO) discharged from industrial gases is a high-efficiency and economical method. In this article, a four-bed PSA experiment for CO purifi...Using pressure swing adsorption (PSA) technology to purify carbon monoxide (CO) discharged from industrial gases is a high-efficiency and economical method. In this article, a four-bed PSA experiment for CO purification was improved and optimized, in which a set of 120 m^3·h^-1 pilot-scale PSA device was developed to purify CO from industrial tail gases, a set of control systems suitable for industry production was developed, and the influences of the operating parameters on CO purification were investigated. The experimental results indicated that the pilot-scale PSA device could produce qualified product gas and get high CO recovery ratio under optimized conditions. The research may provide reliable fundamental data, for industrial scale utilization of CO, from industrial tail gases, and have strong market competitive power and a broad promoted application prospect.展开更多
In order to remove N_(2) from low quality natural gas,a mathematical model has been established by Aspen adsorption,using the CH_(4)-selective sorbent silicalite-1 pellets.The dynamic adsorption isotherm was first sim...In order to remove N_(2) from low quality natural gas,a mathematical model has been established by Aspen adsorption,using the CH_(4)-selective sorbent silicalite-1 pellets.The dynamic adsorption isotherm was first simulated by breakthrough simulation of a CH_(4)/N_(2) mixture at different adsorption pressures and feed flow rates based on breakthrough experiments.The resulting simulated CH_(4) dynamic adsorption amounts were very close to the experimental data at three different adsorption pressures(100,200,and 300 kPa).Moreover,a single-bed,three-step pressure swing adsorption(PSA)experiment was performed,and the results were in good agreement with the simulated data,further corroborating the accuracy of the gas dynamic adsorption isotherm obtained by the simulation method.Finally,based on the simulated dynamic adsorption isotherm of CH_(4) and N_(2),a four-bed,eight-step PSA process has been designed,which enriched 75%(vol)CH_(4) and 80%(vol)CH_(4) to 95%(vol)and 99%(vol),and provided 99%(vol)recovery.展开更多
The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmod...The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmodel, including equilibrium and kinetic models, has provided an elementary viewpoint for PSA processes. Usingthe simplest equilibrium models, some influential factors, such as pressurization with product, incomplete purge,beds with dead volume and heat effects, are discussed respectively. With several approximate assumptions i.e.,concentration profile in adsorbent, 'frozen' column, symmetry and heat effects of bed wall, the more complexkinetic models can be simplified to a certain degree at the expense of a limited application. It has also been foundthat the electrical analogue model has great flexibility to handle more realistic PSA processes without any additionalhypothesis.展开更多
In order to improve the design of PSA system for fuel cell hydrogen production,a non-isothermal model of eight-bed PSA hydrogen process with five-component(H_(2)/N_(2)/CH_(4)/CO/CO_(2)=74.59%/0.01%/4.2%/2.5%/18.7%(vol...In order to improve the design of PSA system for fuel cell hydrogen production,a non-isothermal model of eight-bed PSA hydrogen process with five-component(H_(2)/N_(2)/CH_(4)/CO/CO_(2)=74.59%/0.01%/4.2%/2.5%/18.7%(vol))four-stage pressure equalization was developed in this article.The model adopts a composite adsorption bed of activated carbon and zeolite 5 A.In this article,pressure variation,temperature field and separation performance are stimulated,and also effect of providing purge(PP)differential pressure and the ratio of activated carbon to zeolite 5 A on separation performance in the process of producing industrial hydrogen(CO content in hydrogen is 10μl·L^(-1))and fuel cell hydrogen(CO content is 0.2μl·L^(-1))are compared.The results show that Run 3,when the CO content in hydrogen is 10μl·L^(-1),the hydrogen recovery is 89.8%,and the average flow rate of feed gas is 0.529 mol·s^(-1);When the CO content in hydrogen is 0.2μl·L^(-1),the hydrogen recovery is 85.2%,and the average flow rate of feed gas is 0.43 mol·s^(-1).With the increase of PP differential pressure,hydrogen recovery first increases and then decreases,reaching the maximum when PP differential pressure is 0.263 MPa;With the decrease of the ratio of activated carbon to zeolite 5 A,the hydrogen recovery increases gradually.When the CO content in hydrogen is 0.2μl·L^(-1) the hydrogen recovery increases more obviously,from 83.96%to 86.37%,until the ratio of activated carbon to zeolite 5 A decreases to 1.At the end of PP step,no large amount of CO_(2) in gas or solid phase enters the zeolite 5 A adsorption bed,while when the CO content in hydrogen is 10μl·L^(-1),and the ratio of carbon to zeolite 5 A is less than 1.4,more CO_(2) will enter the zeolite 5 A bed.展开更多
A pressure swing adsorption (PSA) hydrogen purification model for the four-component gas (H_(2)/CO_(2)/CH_(4)/CO=73/16/8/3 mol%) in a layered bed packed with Cu-BTC and zeolite 5A was established to achieve better hyd...A pressure swing adsorption (PSA) hydrogen purification model for the four-component gas (H_(2)/CO_(2)/CH_(4)/CO=73/16/8/3 mol%) in a layered bed packed with Cu-BTC and zeolite 5A was established to achieve better hydrogen purification performance.By comparing its simulation results with the experimental data,the adsorption isotherm model was validated and could be used to accurately describe the adsorption process of the gas mixture on the two adsorbents.The breakthrough curves of the mixed gas on the layered bed were studied to verify the correctness of the established simulation models.Based on the validated model,the performance of the PSA system based on the layered bed was carried out,including the hydrogen purity and recovery.The simulation results show that the hydrogen purification system based on the layered bed model can achieve hydrogen purity of 95.469% and hydrogen recovery of 83.219%.Moreover,a parametric study was carried out and its results show that reductions in feed flow rate and adsorption time result in an increase in hydrogen purity and a decrease in hydrogen recovery.A longer equalization time between the two adsorption beds can simultaneously increase the hydrogen purity and recovery.展开更多
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi...An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.展开更多
The experimental investigation demonstrates that a satisfactory result can be expected for pressure swing adsorption (PSA) purification of natural gas as raw material for thermal chlorination process. Using hh-4 molec...The experimental investigation demonstrates that a satisfactory result can be expected for pressure swing adsorption (PSA) purification of natural gas as raw material for thermal chlorination process. Using hh-4 molecular sieve as adsorbent for removing C+2 components, the suitable adsorption pressure is 0.4-0.45 MPa, desorption vacuum is 0.08-0.09 MPa and circulation time is 20-21 min.展开更多
This study focused on CO<sub>2</sub> separation technology with adsorption. This paper describes the analysis carried out by a CO<sub>2</sub> pressure swing adsorption simulation to scale up th...This study focused on CO<sub>2</sub> separation technology with adsorption. This paper describes the analysis carried out by a CO<sub>2</sub> pressure swing adsorption simulation to scale up the absorber. An unsteady one-dimensional balance model was constructed by considering the material, energy, and momentum. In the CO<sub>2</sub> breakthrough test, the beginning time and CO<sub>2</sub> concentration at outlet of CO<sub>2</sub> breakthrough in the calculation were almost equivalent to that of experiment results. The correlation consistency of the calculation results with the analysis model and the experimental results obtained by a bench scale experiment was evaluated. The transport phenomena in the adsorber were investigated at the adsorption, rinse, and desorption steps according to the calculation results. The starting time of CO<sub>2</sub> breakthrough obtained by the analysis is equal to that obtained by the adsorption breakthrough experiment. This confirms that the CO<sub>2</sub> adsorption, and the temperature and velocity distribution in the adsorber, change as a function of the adsorption, rinse, and desorption steps, respectively. Additionally, the CO<sub>2</sub> concentration of the captured gas and the amount of CO<sub>2</sub> quantity were 93.4% per day and 2.9 ton/day, respectively. These values are equal to those obtained by the bench scale experiment.展开更多
The pressure swing adsorption(PSA)system is widely applied to separate and purify hydrogen from gaseous mixtures.The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to pr...The pressure swing adsorption(PSA)system is widely applied to separate and purify hydrogen from gaseous mixtures.The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to predict the adsorption isothermal of hydrogen and methane on the zeolite 5A adsorbent bed.A six-step two-bed PSA model for hydrogen purification is developed and validated by comparing its simulation results with other works.The effects of the adsorption pressure,the P/F ratio,the adsorption step time and the pressure equalization time on the performance of the hydrogen purification system are studied.A four-step two-bed PSA model is taken into consideration,and the six-step PSA system shows higher about 13%hydrogen recovery than the four-step PSA system.The performance of the vacuum pressure swing adsorption(VPSA)system is compared with that of the PSA system,the VPSA system shows higher hydrogen purity than the PSA system.Based on the validated PSA model,a dataset has been produced to train the artificial neural network(ANN)model.The effects of the number of neurons in the hidden layer and the number of samples used for training ANN model on the predicted performance of ANN model are investigated.Then,the well-trained ANN model with 6 neurons in the hidden layer is applied to predict the performance of the PSA system for hydrogen purification.Multi-objective optimization of hydrogen purification system is performed based on the trained ANN model.The artificial neural network can be considered as a very effective method for predicting and optimizing the performance of the PSA system for hydrogen purification.展开更多
In the present work,a comparative study of the extractive distillation and pressure swing distillation for methanol-acetonitrile separation is performed for the first time.Different separation alternatives,including t...In the present work,a comparative study of the extractive distillation and pressure swing distillation for methanol-acetonitrile separation is performed for the first time.Different separation alternatives,including the conventional extractive distillation,the extractive distillation with vapor or liquid side-stream,the pressure-swing distillation with or without full heat integration,and the heat-pump assisted pressure-swing distillation are rigorously simulated and optimized based on the minimum total annual cost(TAC)via the sequential iterative strategy.The results show that TAC and CO2 emission of the new extractive distillation with vapor side-stream(Vapor-SED)are similar to those of the extractive distillation with liquid side-stream(Liquid-SED).Furthermore,the Vapor-SED and Liquid-SED can achieve 30.01%and 30.56%reduction in TAC and 23.32%and 23.49%reduction in CO2 emission,respectively,over the most competitive fully heat-integrated PSD configuration.Hence,the extractive distillation with vapor or liquid side-stream appears to be a better option economically and environmentally for the separation of methanol and acetonitrile.展开更多
This study focuses on CO_(2) capture by pressure swing adsorption(PSA),with modified clinoptilolite as the adsorbent.Natural clinoptilolite is modified by roasting,by acid pickling,by a combination of acid pickling an...This study focuses on CO_(2) capture by pressure swing adsorption(PSA),with modified clinoptilolite as the adsorbent.Natural clinoptilolite is modified by roasting,by acid pickling,by a combination of acid pickling and roasting,and by ion exchange.Modification by acid pickling-roasting and by ion exchange are found to give the highest CO_(2) adsorption capacities,of 730 mL/g and 876.7 mL/g,respectively.It is found that regeneration of clinoptilolite by a combination of vacuum desorption and heating enables recovery of as much as 89%of its previous CO_(2) adsorption capacity.To examine the CO_(2) adsorption capacity of clinoptilolite when applied to mixed gas,a simulated coking exhaust containing 12%CO_(2) and 4%O_(2) is used,and it is found that ion exchange modified clinoptilolite achieves a CO_(2) removal efficiency of 92.5%.A BET test reveals that acid pickling-roasting and Na^(+) modification enhance the porosity of clinoptilolite,thereby improving its adsorption capacity.This work demonstrates the feasibility of applying modified clinoptilolite as an effective adsorbent for COO_(2)capture,providing a promising tool for dealing with greenhouse gases.展开更多
A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe t...A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.展开更多
In this work, the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched. Adsorption equilibrium and kinetics have b...In this work, the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched. Adsorption equilibrium and kinetics have been measured in a fixed-bed, and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained. A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics, using the Langmuir equation to describe the adsorption equilibrium isotherm. The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied. The experimental results were compared with the ones predicted by the model adapted to a PSA system. Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle. These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.展开更多
Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three ...Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three technologies are analyzed and compared.The cost for chemical absorption is mainly from $30 to $60 per ton(based on CO2 avoided),while the minimum value is $10 per ton(based on CO2 avoided).As for membrane separation and pressure swing adsorption,the costs are $50 to $78 and $40 to $63 per ton(based on CO2 avoided),respectively.Measures are proposed to reduce the cost of the three technologies.For CO2 capture and storage process,the CO2 recovery and purity should be greater than 90%.Based on the cost,recovery,and purity,it seems that chemical absorption is currently the most cost-effective technology for CO2 capture from flue gas from power plants.However,membrane gas separation is the most promising alternative approach in the future,provided that membrane performance is further improved.展开更多
Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be ...Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the COconcentration to less than 100 ppm via the aforementioned process. The COadsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the COresidual concentration before the breakthrough of COmainly depended on the total amount of purge gas and the COmole fraction in the inlet syngas.The residual COconcentration and uptake achieved for the inlet gas comprising CO(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual COconcentration compared to purging with an inert gas. The residual COconcentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/COpurification.展开更多
In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of ...In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.展开更多
The design and operation of radial flow adsorber are crucial in large-scale industrial oxygen production,which necessitate accurate prediction of gas-solid transfer behavior.In this work,a developed Computational Flui...The design and operation of radial flow adsorber are crucial in large-scale industrial oxygen production,which necessitate accurate prediction of gas-solid transfer behavior.In this work,a developed Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)model combined with the adsorption model is proposed.The developed CFD-DEM model is validated by comparing simulated results with experimental data and empirical correlation.Subsequently,the effect of particle packing structure and particle shapes on the dynamic adsorption process are analyzed in detail.The results reveal the mechanism of particle packing structure affecting axial velocity distribution,showing that uneven distribution of resistance on the outer flow channel side leads to uneven axial velocity distribution in the bed.Compared to cylindrical adsorbents,the use of spherical adsorbents results in a more uniform axial velocity distribution,consequently reducing bed pressure drop.The study holds significant potential for optimizing gas distribution and improving separation efficiency in future industrial applications.展开更多
Landfill gas(LFG)utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study.Pressure swing adsorption technology was used in LFG purification,and laborator...Landfill gas(LFG)utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study.Pressure swing adsorption technology was used in LFG purification,and laboratory experiment,pilot-scale test,and on-site demonstration were carried out in Shenzhen,China.In the laboratory experiment,A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents.The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min,respectively,under which the product generation rate was 4.5 m^(3)/h and the methane concentration was above 90%.The process and optimization of the pilot-scale test were also reported in the paper.The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel(GB18047-2000),when the air concentration in feed gas was under 10.96%.The demonstration project was composed of a collection system,production system,and utilization system.The drive performance,environmental protection performance,and economic feasibility of the product gas—as alternative fuel in passenger car,truck,and bulldozer—were tested,showing the feasibility technology for LFG utilization.展开更多
The sorption-enhanced method can change the thermodynamic equilibrium by absorbing CO_(2).However,it also brings about the problems of high regeneration temperature of adsorbent and large regeneration energy consumpti...The sorption-enhanced method can change the thermodynamic equilibrium by absorbing CO_(2).However,it also brings about the problems of high regeneration temperature of adsorbent and large regeneration energy consumption.In order to study the impact of enhanced adsorption methods on the overall energy cost of the system in the hydrogen production process,this paper analyzes and compares steam methane reforming and reactive adsorption-enhanced steam methane reforming with the energy consumption of hydrogen production products as the evaluation index.The results showed that the energy consumption per unit hydrogen production decreased from 276.21 MJ/kmol to 131.51 MJ/kmol,and the decomposition rate of H2O increased by more than 20%after the addition of adsorption enhancement method.It is proved that the advantage of sorption enhanced method on pre-separation of CO_(2)in the product makes up for the disadvantage of energy consumption of adsorbent regeneration.In addition,the ability of the process to obtain H element is improved by the high decomposition rate of H2O,which realizes a more rational distribution of the element.展开更多
In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series...In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series of coconut-shell-based granular activated carbons(GACs)with different pore structures were prepared,which were characterized by different methods.The influence of the pore structure on the separation properties was investigated in detail.The results show that one of the carbons prepared(GAC-3)has high CH4 equilibrium adsorption capacity(3.28 mol·kg–1)at 298 K and equilibrium separation coefficient(3.95).The CH_(4)/N_(2)separation on the GACs is controlled by adsorption equilibrium as compared with the dynamic effect.Taking the specific surface area,for example,the common characterization index of the pore structure is not enough to judge the separation performance of the GACs.However,the microstructure of carbon materials plays a decisive role for CH_(4)/N_(2)separation.According to the pore-structure analysis,the effective pore size for the CH_(4)/N_(2)separation is from 0.4 to 0.9 nm,with the optimum effect occurring in the range of 0.6–0.7 nm,followed by the range of 0.7~0.9 nm.Also,a four-bed vacuum pressure swing adsorption process was adopted to evaluate the performance of GACs for the separation of CH4 from nitrogen.展开更多
基金the National Natural Science Foundation of China(50768006)the National High Technology Research andDevelopment Program of China(2004AA649040).
文摘Using pressure swing adsorption (PSA) technology to purify carbon monoxide (CO) discharged from industrial gases is a high-efficiency and economical method. In this article, a four-bed PSA experiment for CO purification was improved and optimized, in which a set of 120 m^3·h^-1 pilot-scale PSA device was developed to purify CO from industrial tail gases, a set of control systems suitable for industry production was developed, and the influences of the operating parameters on CO purification were investigated. The experimental results indicated that the pilot-scale PSA device could produce qualified product gas and get high CO recovery ratio under optimized conditions. The research may provide reliable fundamental data, for industrial scale utilization of CO, from industrial tail gases, and have strong market competitive power and a broad promoted application prospect.
文摘In order to remove N_(2) from low quality natural gas,a mathematical model has been established by Aspen adsorption,using the CH_(4)-selective sorbent silicalite-1 pellets.The dynamic adsorption isotherm was first simulated by breakthrough simulation of a CH_(4)/N_(2) mixture at different adsorption pressures and feed flow rates based on breakthrough experiments.The resulting simulated CH_(4) dynamic adsorption amounts were very close to the experimental data at three different adsorption pressures(100,200,and 300 kPa).Moreover,a single-bed,three-step pressure swing adsorption(PSA)experiment was performed,and the results were in good agreement with the simulated data,further corroborating the accuracy of the gas dynamic adsorption isotherm obtained by the simulation method.Finally,based on the simulated dynamic adsorption isotherm of CH_(4) and N_(2),a four-bed,eight-step PSA process has been designed,which enriched 75%(vol)CH_(4) and 80%(vol)CH_(4) to 95%(vol)and 99%(vol),and provided 99%(vol)recovery.
基金Supported by the National Natural Science Foundation of China (No. 29876011).
文摘The pressure swing adsorption (PSA) models discussed here are divided into three categories: partialdifferential equation model, electrical analogue model and neural network model. The partial differential equationmodel, including equilibrium and kinetic models, has provided an elementary viewpoint for PSA processes. Usingthe simplest equilibrium models, some influential factors, such as pressurization with product, incomplete purge,beds with dead volume and heat effects, are discussed respectively. With several approximate assumptions i.e.,concentration profile in adsorbent, 'frozen' column, symmetry and heat effects of bed wall, the more complexkinetic models can be simplified to a certain degree at the expense of a limited application. It has also been foundthat the electrical analogue model has great flexibility to handle more realistic PSA processes without any additionalhypothesis.
文摘In order to improve the design of PSA system for fuel cell hydrogen production,a non-isothermal model of eight-bed PSA hydrogen process with five-component(H_(2)/N_(2)/CH_(4)/CO/CO_(2)=74.59%/0.01%/4.2%/2.5%/18.7%(vol))four-stage pressure equalization was developed in this article.The model adopts a composite adsorption bed of activated carbon and zeolite 5 A.In this article,pressure variation,temperature field and separation performance are stimulated,and also effect of providing purge(PP)differential pressure and the ratio of activated carbon to zeolite 5 A on separation performance in the process of producing industrial hydrogen(CO content in hydrogen is 10μl·L^(-1))and fuel cell hydrogen(CO content is 0.2μl·L^(-1))are compared.The results show that Run 3,when the CO content in hydrogen is 10μl·L^(-1),the hydrogen recovery is 89.8%,and the average flow rate of feed gas is 0.529 mol·s^(-1);When the CO content in hydrogen is 0.2μl·L^(-1),the hydrogen recovery is 85.2%,and the average flow rate of feed gas is 0.43 mol·s^(-1).With the increase of PP differential pressure,hydrogen recovery first increases and then decreases,reaching the maximum when PP differential pressure is 0.263 MPa;With the decrease of the ratio of activated carbon to zeolite 5 A,the hydrogen recovery increases gradually.When the CO content in hydrogen is 0.2μl·L^(-1) the hydrogen recovery increases more obviously,from 83.96%to 86.37%,until the ratio of activated carbon to zeolite 5 A decreases to 1.At the end of PP step,no large amount of CO_(2) in gas or solid phase enters the zeolite 5 A adsorption bed,while when the CO content in hydrogen is 10μl·L^(-1),and the ratio of carbon to zeolite 5 A is less than 1.4,more CO_(2) will enter the zeolite 5 A bed.
基金Funded by the National Key R&D Program of China (No.2021YFB2601603)the National Natural Science Foundation of China (Nos. 52176191, 51476120)+2 种基金the Science and Technology Innovation Project of Jianghan University (No. 2021kjzx005)the 111 Project (No. B17034)the Innovative Research Team Development Program of the Ministry of Education of China (No. IRT_17R83)。
文摘A pressure swing adsorption (PSA) hydrogen purification model for the four-component gas (H_(2)/CO_(2)/CH_(4)/CO=73/16/8/3 mol%) in a layered bed packed with Cu-BTC and zeolite 5A was established to achieve better hydrogen purification performance.By comparing its simulation results with the experimental data,the adsorption isotherm model was validated and could be used to accurately describe the adsorption process of the gas mixture on the two adsorbents.The breakthrough curves of the mixed gas on the layered bed were studied to verify the correctness of the established simulation models.Based on the validated model,the performance of the PSA system based on the layered bed was carried out,including the hydrogen purity and recovery.The simulation results show that the hydrogen purification system based on the layered bed model can achieve hydrogen purity of 95.469% and hydrogen recovery of 83.219%.Moreover,a parametric study was carried out and its results show that reductions in feed flow rate and adsorption time result in an increase in hydrogen purity and a decrease in hydrogen recovery.A longer equalization time between the two adsorption beds can simultaneously increase the hydrogen purity and recovery.
基金financially supported by the Renewable Energy and Hydrogen Projects in National Key Research & Development Program of China (2019YFB1505000)。
文摘An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.
文摘The experimental investigation demonstrates that a satisfactory result can be expected for pressure swing adsorption (PSA) purification of natural gas as raw material for thermal chlorination process. Using hh-4 molecular sieve as adsorbent for removing C+2 components, the suitable adsorption pressure is 0.4-0.45 MPa, desorption vacuum is 0.08-0.09 MPa and circulation time is 20-21 min.
文摘This study focused on CO<sub>2</sub> separation technology with adsorption. This paper describes the analysis carried out by a CO<sub>2</sub> pressure swing adsorption simulation to scale up the absorber. An unsteady one-dimensional balance model was constructed by considering the material, energy, and momentum. In the CO<sub>2</sub> breakthrough test, the beginning time and CO<sub>2</sub> concentration at outlet of CO<sub>2</sub> breakthrough in the calculation were almost equivalent to that of experiment results. The correlation consistency of the calculation results with the analysis model and the experimental results obtained by a bench scale experiment was evaluated. The transport phenomena in the adsorber were investigated at the adsorption, rinse, and desorption steps according to the calculation results. The starting time of CO<sub>2</sub> breakthrough obtained by the analysis is equal to that obtained by the adsorption breakthrough experiment. This confirms that the CO<sub>2</sub> adsorption, and the temperature and velocity distribution in the adsorber, change as a function of the adsorption, rinse, and desorption steps, respectively. Additionally, the CO<sub>2</sub> concentration of the captured gas and the amount of CO<sub>2</sub> quantity were 93.4% per day and 2.9 ton/day, respectively. These values are equal to those obtained by the bench scale experiment.
基金We wish to thank the financial support from the National Natural Science Foundation of China for the project No.51476120from the Nat-ural Science Foundation of Liaoning Province for the project No.2020-CSLH-43+1 种基金Mr.Liang Tong also thanks the support from the China Schol-arship Council(CSC)and the Fonds de Recherche du Québec-Nature et Technologies(FRQNT)for the PBEEE fellowship(No.203790)Yi Zong also thanks to the International Network Programmne supported by the Danish Agency for Higher Education and Science(No.8073-00026B)for the project PRESS-Proactive Energy Management Systems for Power-to-Heat and Power-to-Gas Solutions.We also appreciate Dr.Feng Ye for his assistance on artificial neural network programming.
文摘The pressure swing adsorption(PSA)system is widely applied to separate and purify hydrogen from gaseous mixtures.The extended Langmuir equation fitted from the extended Langmuir-Freundlich isotherm has been used to predict the adsorption isothermal of hydrogen and methane on the zeolite 5A adsorbent bed.A six-step two-bed PSA model for hydrogen purification is developed and validated by comparing its simulation results with other works.The effects of the adsorption pressure,the P/F ratio,the adsorption step time and the pressure equalization time on the performance of the hydrogen purification system are studied.A four-step two-bed PSA model is taken into consideration,and the six-step PSA system shows higher about 13%hydrogen recovery than the four-step PSA system.The performance of the vacuum pressure swing adsorption(VPSA)system is compared with that of the PSA system,the VPSA system shows higher hydrogen purity than the PSA system.Based on the validated PSA model,a dataset has been produced to train the artificial neural network(ANN)model.The effects of the number of neurons in the hidden layer and the number of samples used for training ANN model on the predicted performance of ANN model are investigated.Then,the well-trained ANN model with 6 neurons in the hidden layer is applied to predict the performance of the PSA system for hydrogen purification.Multi-objective optimization of hydrogen purification system is performed based on the trained ANN model.The artificial neural network can be considered as a very effective method for predicting and optimizing the performance of the PSA system for hydrogen purification.
文摘In the present work,a comparative study of the extractive distillation and pressure swing distillation for methanol-acetonitrile separation is performed for the first time.Different separation alternatives,including the conventional extractive distillation,the extractive distillation with vapor or liquid side-stream,the pressure-swing distillation with or without full heat integration,and the heat-pump assisted pressure-swing distillation are rigorously simulated and optimized based on the minimum total annual cost(TAC)via the sequential iterative strategy.The results show that TAC and CO2 emission of the new extractive distillation with vapor side-stream(Vapor-SED)are similar to those of the extractive distillation with liquid side-stream(Liquid-SED).Furthermore,the Vapor-SED and Liquid-SED can achieve 30.01%and 30.56%reduction in TAC and 23.32%and 23.49%reduction in CO2 emission,respectively,over the most competitive fully heat-integrated PSD configuration.Hence,the extractive distillation with vapor or liquid side-stream appears to be a better option economically and environmentally for the separation of methanol and acetonitrile.
基金supported by the Natural Science Foundation of China(42177359)the Open Fund of the National Engineering Laboratory for Site Remediation Technologies(NEL-SRT201907).
文摘This study focuses on CO_(2) capture by pressure swing adsorption(PSA),with modified clinoptilolite as the adsorbent.Natural clinoptilolite is modified by roasting,by acid pickling,by a combination of acid pickling and roasting,and by ion exchange.Modification by acid pickling-roasting and by ion exchange are found to give the highest CO_(2) adsorption capacities,of 730 mL/g and 876.7 mL/g,respectively.It is found that regeneration of clinoptilolite by a combination of vacuum desorption and heating enables recovery of as much as 89%of its previous CO_(2) adsorption capacity.To examine the CO_(2) adsorption capacity of clinoptilolite when applied to mixed gas,a simulated coking exhaust containing 12%CO_(2) and 4%O_(2) is used,and it is found that ion exchange modified clinoptilolite achieves a CO_(2) removal efficiency of 92.5%.A BET test reveals that acid pickling-roasting and Na^(+) modification enhance the porosity of clinoptilolite,thereby improving its adsorption capacity.This work demonstrates the feasibility of applying modified clinoptilolite as an effective adsorbent for COO_(2)capture,providing a promising tool for dealing with greenhouse gases.
文摘A mathematical model for simulating concentric-bed and other components of molecular sieve oxygen concentrator is established. In the model, the binary Langmuir equilibrium adsorption equation is adopted to describe the adsorption performance of the adsorbent, the linear driving force (LDF) model is used to describe the mass transfer rate, and the thermal effect during adsorption is considered. The finite difference method is used in simulation and comparison. Numerical results have a reasonable agreement with the experimental research.
文摘In this work, the use of sepiolite for the removal of carbon dioxide from a carbon dioxide/methane mixture by a pressure swing adsorption (PSA) process has been researched. Adsorption equilibrium and kinetics have been measured in a fixed-bed, and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained. A model based on the LDF approximation has been employed to simulate the fixed-bed kinetics, using the Langmuir equation to describe the adsorption equilibrium isotherm. The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied. The experimental results were compared with the ones predicted by the model adapted to a PSA system. Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle. These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.
基金Supported by the National High Technology Research and Development Program of China (2007AA03Z229)the Fundamental Research Funds for the Central Universities (2009ZM0185)
文摘Three gas separation technologies,chemical absorption,membrane separation and pressure swing adsorption,are usually applied for CO2 capture from flue gas in coal-fired power plants.In this work,the costs of the three technologies are analyzed and compared.The cost for chemical absorption is mainly from $30 to $60 per ton(based on CO2 avoided),while the minimum value is $10 per ton(based on CO2 avoided).As for membrane separation and pressure swing adsorption,the costs are $50 to $78 and $40 to $63 per ton(based on CO2 avoided),respectively.Measures are proposed to reduce the cost of the three technologies.For CO2 capture and storage process,the CO2 recovery and purity should be greater than 90%.Based on the cost,recovery,and purity,it seems that chemical absorption is currently the most cost-effective technology for CO2 capture from flue gas from power plants.However,membrane gas separation is the most promising alternative approach in the future,provided that membrane performance is further improved.
基金financed by Shanxi Province Science and Technology Major Projects of MH2015-06
文摘Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the COconcentration to less than 100 ppm via the aforementioned process. The COadsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the COresidual concentration before the breakthrough of COmainly depended on the total amount of purge gas and the COmole fraction in the inlet syngas.The residual COconcentration and uptake achieved for the inlet gas comprising CO(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual COconcentration compared to purging with an inert gas. The residual COconcentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/COpurification.
基金supported by Major military logistics research pro-jects(AWS13Z006)National Key Research and Development program of China(2017YFC0806404).
文摘In this work,a six-bed pressure swing adsorption(PSA)process was investigated to produce medical oxygen from air,which uses the combination of six-way rotating distribution valve and PSA and has the main advantage of effectively saving space compared to the traditional two-bed or four-bed PSA process and can obtain greater productivity.The mathematical model of adsorption beds was developed based on the separation mechanism and the interaction among different equipment.Moreover,a pilot-scale device has been constructed to verify the accuracy of mathematical model by experiment.The oxygen product conformed to the medical standard(>93%(vol))with a recovery of over 57%.Some related parameters were also discussed in detail,such as step time,ratio of length to the diameter,flow rate of product.
基金financially supported by the National Key R&D Program of China(grant No.2019YFB1505000).
文摘The design and operation of radial flow adsorber are crucial in large-scale industrial oxygen production,which necessitate accurate prediction of gas-solid transfer behavior.In this work,a developed Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)model combined with the adsorption model is proposed.The developed CFD-DEM model is validated by comparing simulated results with experimental data and empirical correlation.Subsequently,the effect of particle packing structure and particle shapes on the dynamic adsorption process are analyzed in detail.The results reveal the mechanism of particle packing structure affecting axial velocity distribution,showing that uneven distribution of resistance on the outer flow channel side leads to uneven axial velocity distribution in the bed.Compared to cylindrical adsorbents,the use of spherical adsorbents results in a more uniform axial velocity distribution,consequently reducing bed pressure drop.The study holds significant potential for optimizing gas distribution and improving separation efficiency in future industrial applications.
文摘Landfill gas(LFG)utilization which means a synergy between environmental protection and bioenergy recovery was investigated in this study.Pressure swing adsorption technology was used in LFG purification,and laboratory experiment,pilot-scale test,and on-site demonstration were carried out in Shenzhen,China.In the laboratory experiment,A-type carbon molecular sieve was selected as the adsorbent by comparison of several other adsorbents.The optimal adsorption pressure and adsorption time were 0.25 MPa and 2 min,respectively,under which the product generation rate was 4.5 m^(3)/h and the methane concentration was above 90%.The process and optimization of the pilot-scale test were also reported in the paper.The product gas was of high quality compared with the National Standard of Compressed Natural Gas as Vehicle Fuel(GB18047-2000),when the air concentration in feed gas was under 10.96%.The demonstration project was composed of a collection system,production system,and utilization system.The drive performance,environmental protection performance,and economic feasibility of the product gas—as alternative fuel in passenger car,truck,and bulldozer—were tested,showing the feasibility technology for LFG utilization.
基金the National Key R&D Program of China(2019YFC1906802)for the financial support.
文摘The sorption-enhanced method can change the thermodynamic equilibrium by absorbing CO_(2).However,it also brings about the problems of high regeneration temperature of adsorbent and large regeneration energy consumption.In order to study the impact of enhanced adsorption methods on the overall energy cost of the system in the hydrogen production process,this paper analyzes and compares steam methane reforming and reactive adsorption-enhanced steam methane reforming with the energy consumption of hydrogen production products as the evaluation index.The results showed that the energy consumption per unit hydrogen production decreased from 276.21 MJ/kmol to 131.51 MJ/kmol,and the decomposition rate of H2O increased by more than 20%after the addition of adsorption enhancement method.It is proved that the advantage of sorption enhanced method on pre-separation of CO_(2)in the product makes up for the disadvantage of energy consumption of adsorbent regeneration.In addition,the ability of the process to obtain H element is improved by the high decomposition rate of H2O,which realizes a more rational distribution of the element.
文摘In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series of coconut-shell-based granular activated carbons(GACs)with different pore structures were prepared,which were characterized by different methods.The influence of the pore structure on the separation properties was investigated in detail.The results show that one of the carbons prepared(GAC-3)has high CH4 equilibrium adsorption capacity(3.28 mol·kg–1)at 298 K and equilibrium separation coefficient(3.95).The CH_(4)/N_(2)separation on the GACs is controlled by adsorption equilibrium as compared with the dynamic effect.Taking the specific surface area,for example,the common characterization index of the pore structure is not enough to judge the separation performance of the GACs.However,the microstructure of carbon materials plays a decisive role for CH_(4)/N_(2)separation.According to the pore-structure analysis,the effective pore size for the CH_(4)/N_(2)separation is from 0.4 to 0.9 nm,with the optimum effect occurring in the range of 0.6–0.7 nm,followed by the range of 0.7~0.9 nm.Also,a four-bed vacuum pressure swing adsorption process was adopted to evaluate the performance of GACs for the separation of CH4 from nitrogen.