Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic ...Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.展开更多
1.Objectives The laboratory of Xi’an Center,China Geological Survey has long been engaged in the testing of oil and gas geochemical samples.Among the different indexes,the measurement of the polycyclic aromatic hydro...1.Objectives The laboratory of Xi’an Center,China Geological Survey has long been engaged in the testing of oil and gas geochemical samples.Among the different indexes,the measurement of the polycyclic aromatic hydrocarbon needs to be completed by the fluorescence spectrophotometer which is made in PE Company.According to the standard method,the fluorescence intensity values of three emission wavelengths under a certain excitation wavelength should be provided.展开更多
Let {Tn } be a renewal process in R+ representing the successive arrival times of some natural events. We studied this process by using a record process approach under the assumption that the interarrival times T,, =...Let {Tn } be a renewal process in R+ representing the successive arrival times of some natural events. We studied this process by using a record process approach under the assumption that the interarrival times T,, = Tn, - Ta-1, n = 1, 2...are exponentially i.i.d (independent and identically distributed). The goal is to test that the first observed events are sporadic events. For testing the hypothesis "sporadic" we used the non-parametric test based on the probability distribution of the statistic of the number of records N, among{Xx }k-1= where Xk = (ΔTk)-1. We showed that it is independent of the cumulative distribution of the observations and that it is exactly calculated for each n. We illustrated this statistic on a simulated trajectory and we compared it with descriptive smoothing methods. We studied an application to a data set as storms in France and US.展开更多
基金National Key Research and Development Program of China under Grant No.2023YFE0102900National Natural Science Foundation of China under Grant Nos.52378506 and 52208164。
文摘Although the classical spectral representation method(SRM)has been widely used in the generation of spatially varying ground motions,there are still challenges in efficient simulation of the non-stationary stochastic vector process in practice.The first problem is the inherent limitation and inflexibility of the deterministic time/frequency modulation function.Another difficulty is the estimation of evolutionary power spectral density(EPSD)with quite a few samples.To tackle these problems,the wavelet packet transform(WPT)algorithm is utilized to build a time-varying spectrum of seed recording which describes the energy distribution in the time-frequency domain.The time-varying spectrum is proven to preserve the time and frequency marginal property as theoretical EPSD will do for the stationary process.For the simulation of spatially varying ground motions,the auto-EPSD for all locations is directly estimated using the time-varying spectrum of seed recording rather than matching predefined EPSD models.Then the constructed spectral matrix is incorporated in SRM to simulate spatially varying non-stationary ground motions using efficient Cholesky decomposition techniques.In addition to a good match with the target coherency model,two numerical examples indicate that the generated time histories retain the physical properties of the prescribed seed recording,including waveform,temporal/spectral non-stationarity,normalized energy buildup,and significant duration.
基金This study was funded by the project“Research on general technical standards of land reclamation and ecological restoration,determination of petroleum in reclaimed land samples”(2017YFF0206804-24).
文摘1.Objectives The laboratory of Xi’an Center,China Geological Survey has long been engaged in the testing of oil and gas geochemical samples.Among the different indexes,the measurement of the polycyclic aromatic hydrocarbon needs to be completed by the fluorescence spectrophotometer which is made in PE Company.According to the standard method,the fluorescence intensity values of three emission wavelengths under a certain excitation wavelength should be provided.
文摘Let {Tn } be a renewal process in R+ representing the successive arrival times of some natural events. We studied this process by using a record process approach under the assumption that the interarrival times T,, = Tn, - Ta-1, n = 1, 2...are exponentially i.i.d (independent and identically distributed). The goal is to test that the first observed events are sporadic events. For testing the hypothesis "sporadic" we used the non-parametric test based on the probability distribution of the statistic of the number of records N, among{Xx }k-1= where Xk = (ΔTk)-1. We showed that it is independent of the cumulative distribution of the observations and that it is exactly calculated for each n. We illustrated this statistic on a simulated trajectory and we compared it with descriptive smoothing methods. We studied an application to a data set as storms in France and US.