期刊文献+
共找到590篇文章
< 1 2 30 >
每页显示 20 50 100
From Chooz to the Ling'ao NPP:The Technology Transfer of Pressurized Water Reactor Technology from France to China
1
作者 CHEN Yue LI Yunyi 《Chinese Annals of History of Science and Technology》 2024年第1期97-124,共28页
The transfer of pressurized water reactor(PWR)technology from France to China is an important event in the history of Sino-French scientific and technological relations.China has gradually achieved self-reliance in th... The transfer of pressurized water reactor(PWR)technology from France to China is an important event in the history of Sino-French scientific and technological relations.China has gradually achieved self-reliance in the field of PWR technology through the introduction and subsequent absorption of France's 900 MW reactors.Compared with the process of introducing and absorbing similar technology from the United States by France,China's experience has been more complicated.This circumstance reflects the differences in the nuclear power technology systems between the two countries.France's industrial strength and early acquisition of nuclear power technology laid a solid foundation for mastering PWR technology.On the other hand,although China established a weak foundation through the implementation of the"728 Project,"and tried hard to negotiate with France,the substantive content of the technology transfer was very limited.By way of the policy transition from"unhooking of technology and trade"to"integration of technology and trade,"China ultimately accomplished the absorption and innovation of PWR technology through the Ling'ao NPP. 展开更多
关键词 pressurized water reactor(pwr) technology transfer Sino-French relations Chooz NPP Daya Bay NPP Ling'ao NPP
下载PDF
Control system design for a pressure-tube-type supercritical water-cooled nuclear reactor via a higher order sliding mode method
2
作者 M.Hajipour G.R.Ansarifar 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期145-154,共10页
Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor... Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering. 展开更多
关键词 Supercritical water nuclear reactor Higher order sliding mode controller Steam temperature Steam pressure Point kinetics model
下载PDF
Optimization of the fuel rod's arrangement cooled by turbulentnanofluids flow in pressurized water reactor (PWR)
3
作者 M. Hatami MJ.Z. Ganfi +1 位作者 I. Sohrabiasl D. Jing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第6期722-731,共10页
In this paper, response surface methodology(RSM) based on central composite design(CCD) is applied to obtain an optimization design for the fuel rod's diameter and distance cooled by turbulent Al_2O_3–water nanof... In this paper, response surface methodology(RSM) based on central composite design(CCD) is applied to obtain an optimization design for the fuel rod's diameter and distance cooled by turbulent Al_2O_3–water nanofluid for a typical pressurized water reactor(PWR). Fuel rods and nanofluid flow between them are simulated 3D using computational fluid dynamics(CFD) by ANSYS-FLUNET package software. The RNG k–ε model is used to simulate turbulent nanofluid flow between the rods. The effect of different nanoparticles concentration is also investigated on the Nusselt number from heat transfer efficiency view point. Results reveal that when distance parameter(a) is in the minimum level and diameter parameter(r) is in the maximum possible level, cooling the rods will be better due to higher Nusselt number in this situation. Also, using the different nanoparticles on the cooling process confirms that Al_2O_3 averagely 17% and TiO_2 10% improve the Nusselt numbers. 展开更多
关键词 OPTIMIZATION FUEL RODS NANOFLUID pressurized water reactor
下载PDF
Preliminary study of the tight lattice pressured heavy water reactor loaded with Pu/U and Th/U mixed fuels
4
作者 XU Xiao-Qin, XU Qiu, YOSHIIE Toshimasa, SHIROYA Seiji (Nuclear Science Department, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan) Engineering 《Nuclear Science and Techniques》 SCIE CAS CSCD 2001年第4期302-308,共7页
To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up, a tight pitch lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors. It is shown t... To improve nuclear fuel utilization efficiency and prolong fuel cycle burn-up, a tight pitch lattice pressured heavy water reactor was investigated as an alternative of next generation of power reactors. It is shown that the high conversion ratio and negative coolant void reactivity coefficient are challenges in the reactor core physics designs. Various techniques were proposed to solve these problems. In this work, a tight pitch lattice and mixed fuel assemblies pressured heavy water reactor concept was investigated. By utilizing numerical simulation technique, it is demonstrated that reactor core mixed with Pu/U and Th/U assemblies can achieve high conversion ratio (0.98), long burn-up (60 GWD/t) and negative void reactivity coefficients. 展开更多
关键词 高压重水反应堆 核电站 Th/U混合燃料
下载PDF
Neutronic analysis of silicon carbide cladding accident-tolerant fuel assemblies in pressurized water reactors 被引量:5
5
作者 Zhi-Xiong Tan Jie-Jin Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第3期105-113,共9页
In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry.... In resonance with the Fukushima Daiichi Nuclear Power Plant accident lesson, a novel fuel design to enhance safety regarding severe accident scenarios has become increasingly appreciated in the nuclear power industry. This research focuses on analysis of the neutronic properties of a silicon carbide(SiC) cladding fuel assembly, which provides a greater safety margin as a type of accident-tolerant fuel for pressurized water reactors. The general physical performance of SiC cladding is explored to ascertain its neutronic performance. The neutron spectrum, accumulation of ^(239)Pu, physical characteristics,temperature reactivity coefficient, and power distribution are analyzed. Furthermore, the influences of a burnable poison rod and enrichment are explored. SiC cladding assemblies show a softer neutron spectrum and flatter power distribution than conventional Zr alloy cladding fuel assemblies. Lower enrichment fuel is required when SiC cladding is adopted. However, the positive reactivity coefficient associated with the SiC material remains to be offset. The results reveal that SiC cladding assemblies show broad agreement with the neutronic performance of conventional Zr alloy cladding fuel. In the meantime, its unique physical characteristics can lead to improved safety and economy. 展开更多
关键词 Accident-tolerant fuels Silicon CARBIDE CLADDING NEUTRONIC characteristics pressurized water reactor
下载PDF
Development and Application of Maintenance Template in Pressurized Water Reactor Nuclear Power Plant 被引量:2
6
作者 张圣 陈宇 +1 位作者 曹智鹏 莫春铌 《Journal of Donghua University(English Edition)》 EI CAS 2015年第1期162-165,共4页
Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and econom... Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and economic operation for nuclear power plants( NPPs) especially for a large number of nuclear powers under construction. Based on the development and application of maintenance template in developed countries,and combining with reliability-centered maintenance( RCM) analysis results and maintenance experience data over the past ten years in domestic NPPs, the development process of maintenance template was presented for Chinese pressurized water reactor( PWR) NPP,and the application of maintenance template to maintenance program development and maintenance optimization combined with cases were demonstrated. A shortcut was provided for improving the efficiency of maintenance optimization in domestic PWR NPP,and help to realize a safe,reliable,and economic operation for domestic NPPs. 展开更多
关键词 pressurized water reactor(pwr) nuclear power plant maintenance template maintenance program maintenance optimization
下载PDF
Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor 被引量:1
7
作者 GOU Jun-Li QIU Sui-Zheng SU Guang-Hui JIA Dou-Nan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2006年第5期314-320,共7页
This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single... This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the pre- liminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the pri- mary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation. 展开更多
关键词 核反应堆 压水堆 稳态自然循环 高度差 理论研究
下载PDF
Passive Cooldown Performance of Integral Pressurized Water Reactor
8
作者 Shoubao Dai Chunnan Jin +1 位作者 Jingfu Wang Yuxiang Chen 《Energy and Power Engineering》 2013年第4期505-509,共5页
The design of an integral pressurized water reactor (IPWR) focuses on enhancing the safety and reliability of the reactor by incorporating a number of inherent safety features and engineered safety features. However, ... The design of an integral pressurized water reactor (IPWR) focuses on enhancing the safety and reliability of the reactor by incorporating a number of inherent safety features and engineered safety features. However, the characteristics of passive safety systems for the marine reactors are quiet different from those for the land nuclear power plant because of the more formidable and dangerous operation environments of them. This paper presents results of marine black out accident analyses. In the case of a transient, the passive residual heat removal system (PRHRS) is designed to cool the reactor coolant system (RCS) from a normal operation condition to a hot shutdown condition by a natural circulation, and the shutdown cooling system (SCS) is designed to cool the primary system from a hot shutdown condition to a refueling condition by a forced circulation. A realistic calculation has been carried out by using the RELAP5/MOD3.4 code and a sensitivity analysis has been performed to evaluate a passive cooldown capability. The results of the accident analyses show that the reactor coolant system and the passive residual heat removal system adequately remove the core decay heat by a natural circulation. 展开更多
关键词 An INTEGRAL pressurized water reactor (Ipwr) PASSIVE Safety System STYLING NATURAL CIRCULATION
下载PDF
Non-integer Order Control Scheme for Pressurized Water Reactor Core Power
9
作者 Ibrahim M.Mehedi Maher H.AL-Sereihy +1 位作者 Asmaa Ubaid Al-Saggaf Ubaid M.Al-Saggaf 《Computers, Materials & Continua》 SCIE EI 2022年第7期651-662,共12页
Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable c... Tracking load changes in a pressurized water reactor(PWR)with the help of an efficient core power control scheme in a nuclear power station is very important.The reason is that it is challenging to maintain a stable core power according to the reference value within an acceptable tolerance for the safety of PWR.To overcome the uncertainties,a non-integer-based fractional order control method is demonstrated to control the core power of PWR.The available dynamic model of the reactor core is used in this analysis.Core power is controlled using a modified state feedback approach with a non-integer integral scheme through two different approximations,CRONE(Commande Robuste d’Ordre Non Entier,meaning Non-integer orderRobust Control)and FOMCON(non-integer order modeling and control).Simulation results are produced using MATLAB■program.Both non-integer results are compared with an integer order PI(Proportional Integral)algorithm to justify the effectiveness of the proposed scheme.Sate-spacemodel Core power control Non-integer control Pressurized water reactor PI controller CRONE FOMCON. 展开更多
关键词 Sate-space model core power control non-integer control pressurized water reactor PI controller CRONE FOMCON
下载PDF
Investigation on two-phase critical flow for loss-of-coolant accident of pressurized water reactor
10
作者 徐进良 陈听宽 李鲁伟 《Nuclear Science and Techniques》 SCIE CAS CSCD 1996年第3期143-150,共8页
Investigationontwo-phasecriticalflowforloss-of-coolantaccidentofpressurized water reactorXuJin-Liang(徐进良)(In... Investigationontwo-phasecriticalflowforloss-of-coolantaccidentofpressurized water reactorXuJin-Liang(徐进良)(InstituteofNuclearE... 展开更多
关键词 高压水反应堆 低耗冷却剂 二相临界流
下载PDF
A Novel Computerized Water Level Control System of PWR Steam Generator of Nuclear Power Plant 被引量:1
11
作者 M.Tahir Khaleeq Lang Wenpen He Guosen (School of Automation) 《Advances in Manufacturing》 SCIE CAS 1998年第3期56-66,共11页
This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an impo... This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP). 展开更多
关键词 Steam Generator (SG) pressurized water reactor (pwr) Nuclaer Power Plant (NPP) Rule based Real time Control (RRC)
下载PDF
Flow Instability in Parallel Channels with Water at Supercritical Pressure: A Review
12
作者 Edward Shitsi Seth Kofi Debrah +1 位作者 Vincent Yao Agbodemegbe Emmanuel Ampomah-Amoako 《World Journal of Engineering and Technology》 2018年第1期128-160,共33页
Research into flow instability at both subcritical and supercritical pressures has attracted attention in recent years because of its potential of occurrence in industrial heat transfer systems. Flow instability has t... Research into flow instability at both subcritical and supercritical pressures has attracted attention in recent years because of its potential of occurrence in industrial heat transfer systems. Flow instability has the potential to affect the safety of design and operation of heat transfer equipment. Flow instability is therefore undesirable and should be avoided?in the design and operation of industrial equipment. Rahman?et al. reviewed studies on supercritical water heat transfer with the aim of providing references for SCWR researchers. It was found out that most of the CFD studies and experimental studies were performed with single tube geometry due to the complexity of parallel channel geometry. Because studies performed with parallel channel geometry could provide detailed information to the design of the SCWR core, they called for more studies in parallel channel geometry at supercritical pressures in the future. In order to help understand how flow instability investigations are carried out and also highlight the need to understand flow instability phenomenon and equip the designers and operators of industrial heat transfer equipment with the needed knowledge on flow instability, this study carried out a review of flow instability in parallel channels with water at supercritical pressures. 展开更多
关键词 Parallel CHANNELS SUPERCRITICAL pressure Flow INSTABILITY SUPERCRITICAL water Cooled reactor
下载PDF
Effect of water injection on hydrogen generation during severe accident in PWR
13
作者 TAO Jun CAO Xuewu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2009年第5期312-316,共5页
Effect of water injection on hydrogen generation during severe accident in a 1000 MWe pressurized water reactor was studied. The analyses were carried out with different water injection rates at different core damage ... Effect of water injection on hydrogen generation during severe accident in a 1000 MWe pressurized water reactor was studied. The analyses were carried out with different water injection rates at different core damage stages. The core can be quenched and accident progression can be terminated by water injection at the time before cohesive core debris is formed at lower core region. Hydrogen generation rate decreases with water injection into the core at the peak core temperature of 1700 K, because the core is quenched and reflooded quickly. The water injection at the peak core temperature of 1900 K, the hydrogen generation rate increases at low injection rates of the water, as the core is quenched slowly and the core remains in uncovered condition at high temperatures for a longer time than the situation of high injection rate. At peak core temperature of 2100–2300 K, the Hydrogen generation rate increases by water injection because of the steam serving to the high temperature steam-starved core. Hydrogen generation rate increases significantly after water injection into the core at peak core temperature of 2500 K because of the steam serving to the relocating Zr-U-O mixture. Almost no hydrogen generation can be seen in base case after formation of the molten pool at the lower core region. However, hydrogen is generated if water is injected into the molten pool, because steam serves to the crust supporting the molten pool. Reactor coolant system (RCS) depressurization by opening power operated relief valves has important effect on hydrogen generation. Special attention should be paid to hydrogen generation enhancement caused by RCS depressurization. 展开更多
关键词 pwr 核技术 研究 发展 RCS
下载PDF
Computational analysis for prediction of pressure of PWR presurizer under transient conditions
14
作者 MAHMOODArshad XUJi-Jun 《Nuclear Science and Techniques》 SCIE CAS CSCD 2001年第1期53-60,共8页
A computer model has been developed for prediction of the pressure in the pressurizer under transient conditions. In the model three separate thermodynamic regions which are not required to be in thermal equilibrium h... A computer model has been developed for prediction of the pressure in the pressurizer under transient conditions. In the model three separate thermodynamic regions which are not required to be in thermal equilibrium have been considered. The mathematical model derived from the general conservation equations includes all of the important thermal-hydraulics phenomena occurring in the pressurizer, i.e., stratification of the hot water and incoming cold water, bulk flashing and condensation, wall condensation, and interfacial heat and mass transfer, etc. The bubble rising and rain-out models are developed to describe bulk flashing and condensation, respectively. To obtain the wall condensation rate, a one-dimensional heat conduction equation is solved by the pivoting method. The presented model will predict the pressure-time behavior of a PWR pressurizer during a variety of transients. The results obtained from the proposed mathematical model are in good agreement with available data on the CHASHMA nuclear power plant’8 pressurizer performance. 展开更多
关键词 高压水反应堆 瞬变条件 实际压强分析
下载PDF
Response characteristics of PWR primary circuit under SBLOCAs considering steam bypass discharging
15
作者 Shuai Yang Xiang-Bin Li +2 位作者 Yu-Sheng Liu Jia-Ning Xu De-Chen Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期189-201,共13页
Small-break superposed station blackout(SBO)accidents are the basic design accidents of nuclear power plants.Under the condition of a small break in the cold leg,SBO further increases the severity of the accident,and ... Small-break superposed station blackout(SBO)accidents are the basic design accidents of nuclear power plants.Under the condition of a small break in the cold leg,SBO further increases the severity of the accident,and the steam bypass discharg-ing system(GCT)in the second circuit can play an important role in guaranteeing core safety.To explore the influence of the GCT on the thermal-hydraulic characteristics of the primary circuit,RELAP5 software was used to establish a numerical model based on a typical pressurized water reactor nuclear power plant.Five different small breaks in the cold-leg super-posed SBO were selected,and the impact of the GCT operation on the transient response characteristics of the primary and secondary circuit systems was analyzed.The results show that the GCT plays an indispensable role in core heat removal during an accident;otherwise,core safety cannot be guaranteed.The GCT was used in conjunction with the primary safety injection system during the placement process.When the break diameter was greater than a certain critical value,the core cooling rate could not be guaranteed to be less than 100 K/h;however,the core remained in a safe state. 展开更多
关键词 Steam bypass discharging pressurized water reactor SBLOCA Numerical simulation
下载PDF
PWR蒸汽发生器中一、二次汽水分离器加装挡水器研究 被引量:7
16
作者 陈韶华 黄素逸 《湖北大学学报(自然科学版)》 CAS 2001年第3期238-241,共4页
在水 -空气实验台架上 ,对PWR蒸汽发生器中一次汽水分离器和一、二次汽水分离器加装挡水器进行了一系列实验研究 .实验表明 ,在循环倍率不大的条件下 ,一、二次汽水分离器加装挡水器 ,可降低汽水分离器的上携带 。
关键词 蒸汽发生器 汽水分离器 挡水器 压水堆 核反应堆 轴向位置 集水效果
下载PDF
Robust nonlinear control for nuclear reactors using sliding mode observer to estimate the xenon concentration 被引量:1
17
作者 G.R.Ansarifar H.R.Akhavan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第2期106-114,共9页
This paper presents findings on the sliding mode controller for a nuclear reactor. One of the important operations in nuclear power plants is load following. In this paper, a sliding mode control system, which is a ro... This paper presents findings on the sliding mode controller for a nuclear reactor. One of the important operations in nuclear power plants is load following. In this paper, a sliding mode control system, which is a robust nonlinear controller, is designed to control the pressurizedwater reactor power. The reactor core is simulated based on the point kinetics equations and six delayed neutron groups. Considering neutron absorber poisons and regarding the limitations of the xenon concentration measurement, a sliding mode observer is designed to estimate its value, and finally, a sliding mode control based on the sliding mode observer is presented to control the core power of reactor. The stability analysis is given by means Lyapunov approach; thus, the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications, and moreover,the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed observerbased controller in terms of performance, robustness and stability. 展开更多
关键词 鲁棒非线性控制 滑模观测器 核反应堆 估计 氙气 气浓度 非线性鲁棒控制器 滑模控制系统
下载PDF
IPWRs非能动余热排出系统运行特性分析
18
作者 代守宝 彭敏俊 《核科学与工程》 CAS CSCD 北大核心 2010年第3期244-249,共6页
由于结构紧凑和采用模块化及非能动安全技术,一体化压水堆(IPWRs)特别适合于舰船核动力装置的应用。本文研究对象为基于固有安全一体化动力堆UZrHx和俄罗斯一体化压水堆ABV-6M的运行特点而概念设计的一体化压水堆。堆芯采用弧形板状燃... 由于结构紧凑和采用模块化及非能动安全技术,一体化压水堆(IPWRs)特别适合于舰船核动力装置的应用。本文研究对象为基于固有安全一体化动力堆UZrHx和俄罗斯一体化压水堆ABV-6M的运行特点而概念设计的一体化压水堆。堆芯采用弧形板状燃料元件,直流蒸汽发生器形式为套管式,利用3个回路的自然循环排出堆芯余热的非能动余热排出系统以及一套能动的停堆冷却系统。运用RE-LAP5/MOD3.4程序对该反应堆在全船断电事故工况下反应堆停堆,非能动余热排出系统和能动停堆冷却系统分别投入运行进行仿真计算,分析其热工水力动态特性,保证堆芯安全。 展开更多
关键词 一体化压水堆 非能动余热排出系统 RELAP5/MOD3.4
下载PDF
Performance of Heat Transfer Correlations Adopted at Supercritical Pressures: A Review
19
作者 Edward Shitsi Seth Kofi Debrah +1 位作者 Vincent Yao Agbodemegbe Emmanuel Ampomah-Amoako 《World Journal of Engineering and Technology》 2018年第2期241-267,共27页
Research activities involving heat transfer at supercritical pressures have attracted attention in recent years because of possibility of increase in thermal output of heat transfer and industrial equipment. Because o... Research activities involving heat transfer at supercritical pressures have attracted attention in recent years because of possibility of increase in thermal output of heat transfer and industrial equipment. Because of high pressure and temperature conditions associated with heat transfer at supercritical pressures, only few experimental heat transfer studies are being carried out at supercritical conditions. The use of numerical tools for heat transfer and other related studies at supercritical pressures is increasing because of the high-pressure-temperature limitation of experimental studies at supercritical conditions. Heat transfer correlations implemented in these numerical tools are used to obtain numerical heat transfer data to complement experimental heat transfer data provided through experimental studies. In order to further broaden the understanding of fluid flow and heat transfer, this review examines the performance of heat transfer correlations adopted at supercritical pressures. It is found from the review that most of the correlations could predict heat transfer quite well in the low enthalpy region and few of the correlations could predict heat transfer in the high enthalpy region near critical and pseudo-critical conditions (heat transfer deteriorated conditions). However, no single heat transfer correlation is able to accurately predict all the experimental results presented in this work. 展开更多
关键词 HEAT TRANSFER CORRELATIONS SUPERCRITICAL pressure HEAT TRANSFER DETERIORATION SUPERCRITICAL water Cooled reactor SCWR
下载PDF
乏燃料棒M5锆合金包壳的透射电镜分析
20
作者 钱进 卞伟 +2 位作者 郭一帆 王鑫 梁政强 《原子能科学技术》 EI CSCD 北大核心 2024年第1期149-156,共8页
压水堆燃料元件的锆合金包壳,在服役期间会经受高中子注量辐照,其微观组织将发生很大变化,从而影响其宏观性能,因此锆合金包壳的中子辐照行为研究一直是核领域的研究重点。但由于材料经中子辐照后具有较强的放射性,相关的实验必须在热... 压水堆燃料元件的锆合金包壳,在服役期间会经受高中子注量辐照,其微观组织将发生很大变化,从而影响其宏观性能,因此锆合金包壳的中子辐照行为研究一直是核领域的研究重点。但由于材料经中子辐照后具有较强的放射性,相关的实验必须在热室内进行,因此针对辐照后燃料包壳微观组织的研究也一直是工作的难点。本文在中国原子能科学研究院热室设施上,通过透射电镜分析手段,研究了M5锆合金包壳材料中子辐照后的微观组织。样品来源于国内商业压水堆AFA3G型乏燃料棒,其燃耗分别为14 GW·d/tU和41 GW·d/tU。从燃料棒上截取长度约10 mm的包壳样品,在热室内完成去芯块与化学清洗,获得空包壳样品,然后通过机械制样方法,制备出?3 mm薄片状包壳基体样品,最后采用电解双喷减薄方法,制备出包壳透射电镜观察分析样品。另外,为对比锆包壳辐照后的组织变化,采用同样方法制备了相同材料的冷态观察分析样品。冷态样品与辐照样品的观察分析结果表明:冷态Zr合金包壳基体组织内部存在原生的第二相粒子,基体内部整体较为干净,纳米析出相稀少,未观察到明显的位错结构;辐照后,基体内原生的第二相粒子尺寸和分布与冷态样品差异不明显,但出现了明显的纳米析出相和高密度位错组织;随着燃耗的增加,纳米析出相尺寸有增加的现象;低燃耗与高燃耗样品位错组织具有相似性,表明在14 GW·d/tU燃耗下,锆合金包壳内由辐照产生的位错组织已基本趋于饱和状态;电子选取衍射结果表明,辐照后,基体内原生的第二相粒子虽存在一些非晶组织,但仍以bcc晶体结构为主,表明在41 GW·d/tU燃耗下,第二相粒子保持了一定的辐照稳定性;另外,第二相的EDS结果表明,随着燃耗的增加,Nb元素的含量有贫化趋势;分析认为,Zr合金经中子辐照,第二相粒子中的Nb原子扩展至Zr基体内,将促进Nb元素以纳米富Nb相形式在Zr基体中析出。 展开更多
关键词 辐照后检验 透射电镜 压水堆 锆合金 燃料棒 中子辐照 热室
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部