Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and econom...Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and economic operation for nuclear power plants( NPPs) especially for a large number of nuclear powers under construction. Based on the development and application of maintenance template in developed countries,and combining with reliability-centered maintenance( RCM) analysis results and maintenance experience data over the past ten years in domestic NPPs, the development process of maintenance template was presented for Chinese pressurized water reactor( PWR) NPP,and the application of maintenance template to maintenance program development and maintenance optimization combined with cases were demonstrated. A shortcut was provided for improving the efficiency of maintenance optimization in domestic PWR NPP,and help to realize a safe,reliable,and economic operation for domestic NPPs.展开更多
It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. Through a case study, this ...It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. Through a case study, this study performs a pre-study for the reduction of construction duration in nuclear power plant project based on construction process of the RCB. The actual data of the case study have been collected and analyze the process and the external wall drawings of the RCB with construction practitioners. As a result of that, it is necessary to modularize the external wall form for equipment hatch and to extend the height of one layer of the external wall form to reduce the construction duration of RCB. The results of this study will be utilized to reduce construction duration of the nuclear power plant.展开更多
Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually sin...Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually since it won a contract for a nuclear power plant construction project in the United Arab Emirates in 2009. However, time and monetary resources have been lost in some nuclear power plant construction sites due to lack of risk management ability. The need to prevent losses at nuclear power plant construction sites has become more urgent because it demands professional skills and large-scale resources. Therefore, in this study, the Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) were applied in order to make comparisons between decision-making methods, to assess the potential risks at nuclear power plant construction sites. To suggest the appropriate choice between two decision-making methods, a survey was carried out. From the results, the importance and the priority of 24 risk factors, classified by process, cost, safety, and quality, were analyzed. The FAHP was identified as a suitable method for risk assessment of nuclear power plant construction, compared with risk assessment using the AHP. These risk factors will be able to serve as baseline data for risk management in nuclear power plant construction projects.展开更多
Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant,the first commercial heavy water reactor nuclear power plant in China,was the biggest trade project performed between the governments of China and Canada.As the owner,the Thir...Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant,the first commercial heavy water reactor nuclear power plant in China,was the biggest trade project performed between the governments of China and Canada.As the owner,the Third Qinshan Nuclear Power Company(TQNPC)persisted in independent innovation management during the project construction,commissioning and self-dependent operation,efficiently realizing the three controls of the project,i.e.quality control,schedule control and investment control,and persisted in technical improvement on the basis of digestion and absorption of CANDU-6 technology to improve the unit safety and reliability.The project construction practice has helped China's nuclear power project management to becomeprogrammed,computerized,standardized and internationalized management from the existing basis.After completion of the project,with unit safe and steady operation as the prerequisite,TQNPC performed several technical modifications and innovations to continuously improve the unit performance.In the area of staff development,TQNPC paid much attention to cultivation of corporate culture,strengthed staff training and built up a good circulating mechanism with staff training and project construction promoting each other.Further to "Zero Breakthrough" and a new step forward of locolization successfully realized in Qinshan Nuclear Power Plant and Nuclear Power Qinshan Joint Venture Company,the improvement and developemnt of nuclear power project management level in Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant provided reference for promotion of nuclear power development in China and standardized management of introducing large imported project.展开更多
New research developments suggest that nuclear reactors using fusion may enter the market sooner than imagined even for mobile applications, like merchant ship propulsion and remote power generation. This article aims...New research developments suggest that nuclear reactors using fusion may enter the market sooner than imagined even for mobile applications, like merchant ship propulsion and remote power generation. This article aims at pointing such developments and how they could affect nuclear fusion. The method is enumerating the main nuclear reactors concepts, identifying new technological or theoretical developments useful to nuclear field, and analysing how new recombination could affect feasibility of nuclear fusion. New technologies or experimental results do not always work the way people imagine, being better or worse for intended effects or even bringing completely unforeseen effects. Results point the following designs could be successful, in descending order of potential: aneutronic nuclear reactions using lattice confinement, aneutronic nuclear reactions using inertial along magnetic confinement, hybrid fission-lattice confinement fusion, and fission reactions.展开更多
This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is bel...This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is below the unity and consequently consumes more energy than it supplies, due to the high energy amplification factor of the PWR fission reactor, the global yield is widely superior to 1. As the energy supplied by the fusion reactor is relatively low and as the neutrons supplied are mainly issued from D-D fusions (at 2.45 MeV), the problems of heat flux and neutrons damage connected with materials, as with D-T fusion reactors are reduced. Of course, there is no need to produce Tritium with this D-D fusion reactor. This type of reactor is able to incinerate any mixture of natural Uranium, natural Thorium and depleted Uranium (waste issued from enrichment plants), with natural Thorium being the best choice. No enriched fuel is needed. So, this type of reactor could constitute a source of energy for several thousands of years because it is about 90 more efficient than a standard fission reactor, such as a PWR or a Candu one, by extracting almost completely the energy from the fertile materials U238 and Th232. For the fission part, PWR technology is mature. For the fusion part, it is based on a reasonable hypothesis done on present Stellarators projects. The working of this reactor is continuous, 24 hours a day. In this paper, it will be targeted a reactor able to provide net electric power of about 1400 MWe, as a big fission power plant.展开更多
This paper aims to study the architectural design and components of Nuclear Power Plants (NPPs). It is also focusing on the simulation system. Its main objective is to set general guidelines for architects. They sho...This paper aims to study the architectural design and components of Nuclear Power Plants (NPPs). It is also focusing on the simulation system. Its main objective is to set general guidelines for architects. They should be aware of the basics of nuclear facilities designs and components. A traditional nuclear power plant consists of a nuclear reactor, a control building, a turbines building, cooling towers, service buildings (an office building & a medical research center) and a nuclear & radiation waste storage building. Bushehr nuclear power plant in Iran and Angra nuclear power plant in Brazil have been chosen as examples. Furthermore, this paper presents design analyses for Bushehr nuclear power plant and Angra nuclear power plant that include design theory (linear design and radial design) and positive & negative aspects of these designs. At the end of this paper, results and recommendations on the architectural and urban aspects of nuclear power plants are revealed.展开更多
New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and w...New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.展开更多
The digital reactor protection system(RPS)is one of the most important digital instrumentation and control(I&C)systems utilized in nuclear power plants(NPPs).It ensures a safe reactor trip when the safety-related ...The digital reactor protection system(RPS)is one of the most important digital instrumentation and control(I&C)systems utilized in nuclear power plants(NPPs).It ensures a safe reactor trip when the safety-related parameters violate the operational limits and conditions of the reactor.Achieving high reliability and availability of digital RPS is essential to maintaining a high degree of reactor safety and cost savings.The main objective of this study is to develop a general methodology for improving the reliability of the RPS in NPP,based on a Bayesian Belief Network(BBN)model.The structure of BBN models is based on the incorporation of failure probability and downtime of the RPS I&C components.Various architectures with dual-state nodes for the I&C components were developed for reliability-sensitive analysis and availability optimization of the RPS and to demonstrate the effect of I&C components on the failure of the entire system.A reliability framework clarified as a reliability block diagram transformed into a BBN representation was constructed for each architecture to identify which one will fit the required reliability.The results showed that the highest availability obtained using the proposed method was 0.9999998.There are 120 experiments using two common component importance measures that are applied to define the impact of I&C modules,which revealed that some modules are more risky than others and have a larger effect on the failure of the digital RPS.展开更多
Many developing countries need ecologically clean power sources (PS). The nuclear power plants are such sources. However, a great number of the developing countries do not possess developed large capacity power system...Many developing countries need ecologically clean power sources (PS). The nuclear power plants are such sources. However, a great number of the developing countries do not possess developed large capacity power systems. Moreover, currently in the developing countries, there are no highly skilled personnel to provide construction and reliable and safe operation of the nuclear plants, which are complex and potentially hazardous systems. In some countries, the level of terroristic threat is extremely high. For that reason, there are specific requirements to the nuclear PSs intended for use in the developing countries. In the presented report, the specific requirements which must be met by the NPT proposed for use in developing countries are formulated, basic statements of the SVBR-100 concept are presented, design and principal scheme of the reactor fa-ility are described, major characteristics of SVBR-100 are summarized.展开更多
Fast reactors used lead-bismuth eutectic (LBE) and lead as coolants possess very high level of inherent self-protection and passive safety against severe accident. So, population radiophobia can be overcome. That type...Fast reactors used lead-bismuth eutectic (LBE) and lead as coolants possess very high level of inherent self-protection and passive safety against severe accident. So, population radiophobia can be overcome. That type of reactors can be simultaneously more safely and more cheaply. As all other coolants, LBE and lead coolant (LC) possess the certain virtues and shortcomings. The presented report includes the comparative analysis of characteristic properties of those coolants, their impact on reactor safety, reliability and operating characteristics. The conclusion is made about promising usage of FRs with these coolants in future NP after the experience in operating of the prototypes of such reactors has been obtained.展开更多
Reactor pressure vessel (RPV), the only key component that can not be replaced in nuclear power plants (NPPs), is the main barrier against the radioactive leakage. The lifetime of NPPs is dependent heavily on the life...Reactor pressure vessel (RPV), the only key component that can not be replaced in nuclear power plants (NPPs), is the main barrier against the radioactive leakage. The lifetime of NPPs is dependent heavily on the life of RPV, and thus, the aging and life research on a RPV is a key factor in determining the life extension of NPPs. The purpose of this paper is to introduce an aging and life management system for an operating RPV which can be used as a reference of the lifetime extension. In order to realize the objective, an aging and life management system was developed. It is an comprehensive knowledge management system that integrates decentralized information and serves as a valuable data center. Based on the storage and management of RPV state information and operation data, this system provides real-time monitoring of important operating parameters, evaluation of irradiation embrittlement, and RPV aging assessment. Therefore, it is anticipated that the developed system can be used as an efficient tool for aging and life estimation of RPV.展开更多
This paper discusses the results obtained during an investigation of WWER-1000 Nuclear Power Plant (NPP) behavior at shutdown reactor during maintenance. For the purpose of the analysis is selected a plant operating s...This paper discusses the results obtained during an investigation of WWER-1000 Nuclear Power Plant (NPP) behavior at shutdown reactor during maintenance. For the purpose of the analysis is selected a plant operating state with unsealed primary circuit by removing the MCP head. The reference nuclear power plant is Unit 6 at Kozloduy NPP (KNPP) site. RELAP5/ MOD3.2 computer code has been used to simulate the transient for WWER-1000/V320 NPP model. A model of WWER-1000 based on Unit 6 of KNPP has been developed for the RELAP5/MOD3.2 code at the Institute for Nuclear Research and Nuclear Energy-Bulgarian Academy of Sciences (INRNE-BAS), Sofia. The plant modifications performed in frame of modernization program have been taken into account for the investigated conditions for the unsealed primary circuit. The most specific in this analysis compared to the analyses of NPP accidents at full power is the unavailability of some important safety systems. For the purpose of the present investigation two scenarios have been studied, involving a different number of safety systems with and without operator actions. The selected initiating event and scenarios are used in support of analytical validation of Emergency Operating Procedures (EOP) at low power and they are based on the suggestions of leading KNPP experts and are important in support of analytical validation of EOP at low power.展开更多
文摘Good practices of maintenance optimization in nuclear power field need to be effectively consolidated and inherited,and maintenance optimization can provide technology support to create a long-term reliable and economic operation for nuclear power plants( NPPs) especially for a large number of nuclear powers under construction. Based on the development and application of maintenance template in developed countries,and combining with reliability-centered maintenance( RCM) analysis results and maintenance experience data over the past ten years in domestic NPPs, the development process of maintenance template was presented for Chinese pressurized water reactor( PWR) NPP,and the application of maintenance template to maintenance program development and maintenance optimization combined with cases were demonstrated. A shortcut was provided for improving the efficiency of maintenance optimization in domestic PWR NPP,and help to realize a safe,reliable,and economic operation for domestic NPPs.
文摘It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. Through a case study, this study performs a pre-study for the reduction of construction duration in nuclear power plant project based on construction process of the RCB. The actual data of the case study have been collected and analyze the process and the external wall drawings of the RCB with construction practitioners. As a result of that, it is necessary to modularize the external wall form for equipment hatch and to extend the height of one layer of the external wall form to reduce the construction duration of RCB. The results of this study will be utilized to reduce construction duration of the nuclear power plant.
文摘Recently, plant construction throughout the world, including nuclear power plant construction, has grown significantly. The scale of Korea’s nuclear power plant construction in particular, has increased gradually since it won a contract for a nuclear power plant construction project in the United Arab Emirates in 2009. However, time and monetary resources have been lost in some nuclear power plant construction sites due to lack of risk management ability. The need to prevent losses at nuclear power plant construction sites has become more urgent because it demands professional skills and large-scale resources. Therefore, in this study, the Analytic Hierarchy Process (AHP) and Fuzzy Analytic Hierarchy Process (FAHP) were applied in order to make comparisons between decision-making methods, to assess the potential risks at nuclear power plant construction sites. To suggest the appropriate choice between two decision-making methods, a survey was carried out. From the results, the importance and the priority of 24 risk factors, classified by process, cost, safety, and quality, were analyzed. The FAHP was identified as a suitable method for risk assessment of nuclear power plant construction, compared with risk assessment using the AHP. These risk factors will be able to serve as baseline data for risk management in nuclear power plant construction projects.
文摘Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant,the first commercial heavy water reactor nuclear power plant in China,was the biggest trade project performed between the governments of China and Canada.As the owner,the Third Qinshan Nuclear Power Company(TQNPC)persisted in independent innovation management during the project construction,commissioning and self-dependent operation,efficiently realizing the three controls of the project,i.e.quality control,schedule control and investment control,and persisted in technical improvement on the basis of digestion and absorption of CANDU-6 technology to improve the unit safety and reliability.The project construction practice has helped China's nuclear power project management to becomeprogrammed,computerized,standardized and internationalized management from the existing basis.After completion of the project,with unit safe and steady operation as the prerequisite,TQNPC performed several technical modifications and innovations to continuously improve the unit performance.In the area of staff development,TQNPC paid much attention to cultivation of corporate culture,strengthed staff training and built up a good circulating mechanism with staff training and project construction promoting each other.Further to "Zero Breakthrough" and a new step forward of locolization successfully realized in Qinshan Nuclear Power Plant and Nuclear Power Qinshan Joint Venture Company,the improvement and developemnt of nuclear power project management level in Qinshan Phase Ⅲ(PHWR)Nuclear Power Plant provided reference for promotion of nuclear power development in China and standardized management of introducing large imported project.
文摘New research developments suggest that nuclear reactors using fusion may enter the market sooner than imagined even for mobile applications, like merchant ship propulsion and remote power generation. This article aims at pointing such developments and how they could affect nuclear fusion. The method is enumerating the main nuclear reactors concepts, identifying new technological or theoretical developments useful to nuclear field, and analysing how new recombination could affect feasibility of nuclear fusion. New technologies or experimental results do not always work the way people imagine, being better or worse for intended effects or even bringing completely unforeseen effects. Results point the following designs could be successful, in descending order of potential: aneutronic nuclear reactions using lattice confinement, aneutronic nuclear reactions using inertial along magnetic confinement, hybrid fission-lattice confinement fusion, and fission reactions.
文摘This article proposes to associate a Deuterium-Deuterium (D-D) fusion reactor with a PWR (fission Pressurized Water Reactor) in a hybrid reactor. Even if the mechanical gain (Q factor) of the D-D fusion reactor is below the unity and consequently consumes more energy than it supplies, due to the high energy amplification factor of the PWR fission reactor, the global yield is widely superior to 1. As the energy supplied by the fusion reactor is relatively low and as the neutrons supplied are mainly issued from D-D fusions (at 2.45 MeV), the problems of heat flux and neutrons damage connected with materials, as with D-T fusion reactors are reduced. Of course, there is no need to produce Tritium with this D-D fusion reactor. This type of reactor is able to incinerate any mixture of natural Uranium, natural Thorium and depleted Uranium (waste issued from enrichment plants), with natural Thorium being the best choice. No enriched fuel is needed. So, this type of reactor could constitute a source of energy for several thousands of years because it is about 90 more efficient than a standard fission reactor, such as a PWR or a Candu one, by extracting almost completely the energy from the fertile materials U238 and Th232. For the fission part, PWR technology is mature. For the fusion part, it is based on a reasonable hypothesis done on present Stellarators projects. The working of this reactor is continuous, 24 hours a day. In this paper, it will be targeted a reactor able to provide net electric power of about 1400 MWe, as a big fission power plant.
文摘This paper aims to study the architectural design and components of Nuclear Power Plants (NPPs). It is also focusing on the simulation system. Its main objective is to set general guidelines for architects. They should be aware of the basics of nuclear facilities designs and components. A traditional nuclear power plant consists of a nuclear reactor, a control building, a turbines building, cooling towers, service buildings (an office building & a medical research center) and a nuclear & radiation waste storage building. Bushehr nuclear power plant in Iran and Angra nuclear power plant in Brazil have been chosen as examples. Furthermore, this paper presents design analyses for Bushehr nuclear power plant and Angra nuclear power plant that include design theory (linear design and radial design) and positive & negative aspects of these designs. At the end of this paper, results and recommendations on the architectural and urban aspects of nuclear power plants are revealed.
文摘New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.
文摘The digital reactor protection system(RPS)is one of the most important digital instrumentation and control(I&C)systems utilized in nuclear power plants(NPPs).It ensures a safe reactor trip when the safety-related parameters violate the operational limits and conditions of the reactor.Achieving high reliability and availability of digital RPS is essential to maintaining a high degree of reactor safety and cost savings.The main objective of this study is to develop a general methodology for improving the reliability of the RPS in NPP,based on a Bayesian Belief Network(BBN)model.The structure of BBN models is based on the incorporation of failure probability and downtime of the RPS I&C components.Various architectures with dual-state nodes for the I&C components were developed for reliability-sensitive analysis and availability optimization of the RPS and to demonstrate the effect of I&C components on the failure of the entire system.A reliability framework clarified as a reliability block diagram transformed into a BBN representation was constructed for each architecture to identify which one will fit the required reliability.The results showed that the highest availability obtained using the proposed method was 0.9999998.There are 120 experiments using two common component importance measures that are applied to define the impact of I&C modules,which revealed that some modules are more risky than others and have a larger effect on the failure of the digital RPS.
文摘Many developing countries need ecologically clean power sources (PS). The nuclear power plants are such sources. However, a great number of the developing countries do not possess developed large capacity power systems. Moreover, currently in the developing countries, there are no highly skilled personnel to provide construction and reliable and safe operation of the nuclear plants, which are complex and potentially hazardous systems. In some countries, the level of terroristic threat is extremely high. For that reason, there are specific requirements to the nuclear PSs intended for use in the developing countries. In the presented report, the specific requirements which must be met by the NPT proposed for use in developing countries are formulated, basic statements of the SVBR-100 concept are presented, design and principal scheme of the reactor fa-ility are described, major characteristics of SVBR-100 are summarized.
文摘Fast reactors used lead-bismuth eutectic (LBE) and lead as coolants possess very high level of inherent self-protection and passive safety against severe accident. So, population radiophobia can be overcome. That type of reactors can be simultaneously more safely and more cheaply. As all other coolants, LBE and lead coolant (LC) possess the certain virtues and shortcomings. The presented report includes the comparative analysis of characteristic properties of those coolants, their impact on reactor safety, reliability and operating characteristics. The conclusion is made about promising usage of FRs with these coolants in future NP after the experience in operating of the prototypes of such reactors has been obtained.
文摘Reactor pressure vessel (RPV), the only key component that can not be replaced in nuclear power plants (NPPs), is the main barrier against the radioactive leakage. The lifetime of NPPs is dependent heavily on the life of RPV, and thus, the aging and life research on a RPV is a key factor in determining the life extension of NPPs. The purpose of this paper is to introduce an aging and life management system for an operating RPV which can be used as a reference of the lifetime extension. In order to realize the objective, an aging and life management system was developed. It is an comprehensive knowledge management system that integrates decentralized information and serves as a valuable data center. Based on the storage and management of RPV state information and operation data, this system provides real-time monitoring of important operating parameters, evaluation of irradiation embrittlement, and RPV aging assessment. Therefore, it is anticipated that the developed system can be used as an efficient tool for aging and life estimation of RPV.
文摘This paper discusses the results obtained during an investigation of WWER-1000 Nuclear Power Plant (NPP) behavior at shutdown reactor during maintenance. For the purpose of the analysis is selected a plant operating state with unsealed primary circuit by removing the MCP head. The reference nuclear power plant is Unit 6 at Kozloduy NPP (KNPP) site. RELAP5/ MOD3.2 computer code has been used to simulate the transient for WWER-1000/V320 NPP model. A model of WWER-1000 based on Unit 6 of KNPP has been developed for the RELAP5/MOD3.2 code at the Institute for Nuclear Research and Nuclear Energy-Bulgarian Academy of Sciences (INRNE-BAS), Sofia. The plant modifications performed in frame of modernization program have been taken into account for the investigated conditions for the unsealed primary circuit. The most specific in this analysis compared to the analyses of NPP accidents at full power is the unavailability of some important safety systems. For the purpose of the present investigation two scenarios have been studied, involving a different number of safety systems with and without operator actions. The selected initiating event and scenarios are used in support of analytical validation of Emergency Operating Procedures (EOP) at low power and they are based on the suggestions of leading KNPP experts and are important in support of analytical validation of EOP at low power.