Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulator...Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.展开更多
In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cell...In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cells”,recently published in World Journal of Stem Cells.Despite over three decades of research on the clinical application of mesenchymal stem cells(MSCs),only a few therapeutic products have made it to clinical use,due to multiple preclinical and clinical challenges yet to be addressed.The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics,which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs.As we delve deeper into the intricacies of pretreat-ment methodologies,we anticipate a transformative shift in the landscape of MSC-based therapies,ultimately contributing to improved patient outcomes and advancing the field as a whole.展开更多
The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a ke...The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification.展开更多
Mechanical pretreatment is an indispensable process in biological treatment plants that remove plastics and other impurities from household biogenic waste(HBW).However,the imperfect separation of plastics in these pre...Mechanical pretreatment is an indispensable process in biological treatment plants that remove plastics and other impurities from household biogenic waste(HBW).However,the imperfect separation of plastics in these pretreatment methods has raised concerns that they pose a secondary formation risk for microplastics(MPs).To validate this presumption,herein,quantities and properties of plastic debris and MPs larger than 50 μm were examined in the full chain of three different pretreatment methods in six plants.These facilities received HBW with or without prior depackaging at the source.The key points in the secondary formation of MPs were identified.Moreover,flux estimates of MPs were released,and an analysis of MPs sources was provided to develop an overview of their fate in HBW pretreatment.Pretreated output can contain a maximum of(1673±279) to(3198±263) MP particles per kilogram of wet weight(particles·kg^(-1)ww) for those undepackaged at source,and secondary MPs formation is primarily attributed to biomass crushers,biohydrolysis reactors,and rough shredders.Comparatively,HBW depackaged at the source can greatly reduce MPs by 8%-72%,regardless of pretreatment processes.Before pretreatment,4.6-205.6 million MP particles were present in 100 tonnes of HBW.MPs are produced at a rate of 741.11-33124.22 billion MP particles annually in anaerobic digester feedstock(ADF).This study demonstrated that HBW pretreatment is a competitive source of MPs and emphasized the importance of implementing municipal solid waste segregation at the source.Furthermore,depackaging biogenic waste at the source is recommended to substantially alleviate the negative effect of pretreatment on MPs formation.展开更多
Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce d...Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280.展开更多
AIM:To investigate the antioxidant protective effect of Lycium barbarum glycopeptide(LbGP)pretreatment on retinal ischemia-reperfusion(I/R)injury(RIRI)in rats.METHODS:RIRI was induced in Sprague Dawley rats through an...AIM:To investigate the antioxidant protective effect of Lycium barbarum glycopeptide(LbGP)pretreatment on retinal ischemia-reperfusion(I/R)injury(RIRI)in rats.METHODS:RIRI was induced in Sprague Dawley rats through anterior chamber perfusion,and pretreatment involved administering LbGP via gavage for 7d.After 24h of reperfusion,serum alanine aminotransferase(ALT),aspartate aminotransferase(AST),and creatinine(CREA)levels,retinal structure,expression of Caspase-3 and Caspase-8,superoxide dismutase(SOD)activity,and malondialdehyde(MDA)in the retina were measured.RESULTS:The pretreatment with LbGP effectively protected the retina and retinal tissue from edema and inflammation in the ganglion cell layer(GCL)and nerve fiber layer(NFL)of rats subjected to RIRI,as shown by light microscopy and optical coherence tomography(OCT).Serum AST was higher in the model group than in the blank group(P=0.042),but no difference was found in ALT,AST,and CREA across the LbGP groups and model group.Caspase-3 expression was higher in the model group than in the blank group(P=0.006),but no difference was found among LbGP groups and the model group.Caspase-8 expression was higher in the model group than in the blank group(P=0.000),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).SOD activity was lower in the model group than in the blank group(P=0.001),and the decrease was slower in the 400 mg/kg LbGP group than in the model group(P=0.003).MDA content was higher in the model group than in the blank group(P=0.001),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).The pretreatment with LbGP did not result in any observed liver or renal toxicity in the model.CONCLUSION:LbGP pretreatment exhibits dosedependent anti-inflammatory,and antioxidative effects by reducing Caspase-8 expression,preventing declines of SOD activity,and decreasing MDA content in the RIRI rat model.展开更多
Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and ...Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect.展开更多
The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were expl...The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.展开更多
Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-st...Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.展开更多
The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pe...The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.展开更多
Although hydrofluoric acid(HF)surface treatment is known to enhance the joining of metals with polymers,there is limited information on its effect on the joining of AZ31 alloy and carbon-fiber-reinforced plastics(CFRP...Although hydrofluoric acid(HF)surface treatment is known to enhance the joining of metals with polymers,there is limited information on its effect on the joining of AZ31 alloy and carbon-fiber-reinforced plastics(CFRPs)through laser-assisted metal and plastic direct joining(LAMP).This study uses the LAMP technique to produce AZ31-CFRP joints.The joining process involves as-received AZ31,HFpretreated AZ31,and thermally oxidized HF-pretreated AZ31 alloy sheets.Furthermore,the bonding strength of joints prepared with thermally oxidized AZ31 alloy sheets is examined to ascertain the combined effect of HF treatment and thermal oxidation on bonding strength.The microstructures,surface chemical interactions,and mechanical performances of joints are investigated under tensile shear loading.Various factors,such as bubble formation,CFRP resin decomposition,and mechanical interlocking considerably affect joint strength.Additionally,surface chemical interactions between the active species on metal parts and the polar amide along with carbonyl groups of polymer play a significant role in improving joint strength.Joints prepared with surface-pretreated AZ31 alloy sheets show significant improvements in bonding strength.展开更多
Millets are widely recognized for their nutritional significance;however, the methods employed for their processing are currently lacking. This article primarily focuses on the advanced technologies and progressions i...Millets are widely recognized for their nutritional significance;however, the methods employed for their processing are currently lacking. This article primarily focuses on the advanced technologies and progressions in millet dehulling and polishing. These technologies operate based on the fundamental principles of compression-shearing, abrasion-friction, and centrifugal-impact forces. Processing of millets can be challenging because of the physical characteristics and tight attachment of hull and bran to the endosperm. However, several dehullers have been designed to solve this problem for different kinds of millets. In addition, the nutritional and anti-nutritional characteristics undergo alterations due to both dehulling and polishing processes. These alterations are thoroughly examined and discussed in this article. Specifically, anti-nutrients such as tannins and phytate are predominantly found in the outer pericarp of the grain and experience a reduction after undergoing dehulling and polishing. The nutritional properties are also subjected to a reduction;however, this reduction can be mitigated by subjecting the grains to certain pretreatments before dehulling and polishing. These treatments serve to enhance dehulling efficiency and nutrient digestibility while simultaneously reducing the presence of anti-nutrients. Novel thermal and non-thermal methodologies such as microwave, hydrothermal, high-pressure processing, and ohmic heating can be employed for processing millets, thereby diminishing the loss of nutrients. Additional research can be carried out to investigate their impact on the dehulling and polishing of millets.展开更多
BACKGROUND Intestinal ischemia-reperfusion(I/R)injury(II/RI)is a critical condition that results in oxidative stress,inflammation,and damage to multiple organs.Zinc,an essential trace element,offers protective benefit...BACKGROUND Intestinal ischemia-reperfusion(I/R)injury(II/RI)is a critical condition that results in oxidative stress,inflammation,and damage to multiple organs.Zinc,an essential trace element,offers protective benefits in several tissues during I/R injury,but its effects on intestinal II/RI remain unclear.METHODS C57BL/6 mice were pretreated with zinc sulfate(ZnSO4,10 mg/kg)daily for three days before I/R injury was induced via superior mesenteric artery occlusion(SMAO)and abdominal aortic occlusion(AAO)models.Tissue and serum samples were collected to evaluate intestinal,liver,and kidney damage using Chiu’s score,Suzuki score,and histopathological analysis.Caco-2 cells and intestinal organoids were used for in vitro hypoxia-reoxygenation injury models to measure reactive oxygen species(ROS)and superoxide dismutase(SOD)levels.RESULTS Zinc pretreatment significantly reduced intestinal damage in the SMAO and AAO models(P<0.001).The serum levels of liver enzymes(alanine aminotransferase,aspartate aminotransferase)and kidney markers(creatinine and urea)were lower in the zinc-treated mice than in the control mice,indicating reduced hepatic and renal injury.In vitro,zinc decreased ROS levels and increased SOD activity in Caco-2 cells subject to hypoxia-reoxygenation injury.Intestinal organoids pretreated with zinc exhibited enhanced resilience to hypoxic injury compared to controls.CONCLUSION Zinc pretreatment mitigates II/RI and reduces associated multiorgan damage.These findings suggest that zinc has potential clinical applications in protecting against I/R injuries.展开更多
The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid ...The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid phase extraction (SPE), which uses the interaction between adsorbent and impurities in the matrix to achieve the purpose of purification. The method has easier operation and better purification effect than SPE. In this paper, the research progress of the QuEChERS technique in pesticide residue detection in different fields in recent years and its future development were reviewed, hoping to provide reference for further development and utilization of the QuEChERS technique in pesticide residue detection in the future.展开更多
The effect of pruning severity on tree growth was analyzed by change point detection using segmented regression. The present study applied this analysis to a well-known published data set including diameter growth res...The effect of pruning severity on tree growth was analyzed by change point detection using segmented regression. The present study applied this analysis to a well-known published data set including diameter growth response, tree age, pruning severity and pretreatment crown size. First, multiple regression analysis was performed to assess the effect of tree age, pruning severity and pretreatment crown size on diameter growth response. Next, segmented regression analysis was performed to assess the effect of pruning severity on diameter growth response. The results of the multiple regression showed that diameter growth response was significantly influenced by pruning severity and pretreatment crown size. The results of the segmented regression showed that in the whole data set, an abrupt change toward a decrease in diameter growth response was detected at 25% of the live crown removed. However, in the group of fully crowned and open-grown, diameter growth response continuously decreased with increasing pruning severity with no significant abrupt change, whereas in the group of 70% - 90% live crown, diameter growth response did not significantly decrease up to the break point (53% crown removed) and then abruptly decreased. This may be the first study to show the numerical evaluation of the effect of pruning severity on tree growth by change point analysis.展开更多
[ Objective] The aim was to study pretreatment of ultrasound enhancing dilute H2SO4 on cellulase activity of corn straw liquid fermentation and explore the pretretment' s optimal conditions. [ Method ] By using ortho...[ Objective] The aim was to study pretreatment of ultrasound enhancing dilute H2SO4 on cellulase activity of corn straw liquid fermentation and explore the pretretment' s optimal conditions. [ Method ] By using orthogonal test, the pretretment of ultrasound enhancing dilute H2SO4 on corn straw was studied, then straw was fermented as the sole carbon source. Finally, the cellulase activity in extracellular fermentation broth was determined. [Result] The results showed that cellulase activity in extracellular broth was greatest under the conditions of acid bath time 3 h, acid concentration 3.5%, ultrasonic power 150 W, and ultrasonic time 5 h. They were FPA 15.82 U/ml, Cx 39.9 U/ml, 13-Giu 55.94 U/ml respectively. [ Conclusion] Under the above conditions, extracellular cellulase production has a high stability.展开更多
Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface ...Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.展开更多
It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarizatio...It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.展开更多
Carbonaceous gold mines are important refractory gold ores. The previous results demonstrate that the carbonaceous matter is mainly composed of elemental carbon, organic acid and hydrocarbons. The dissolved aurocyanid...Carbonaceous gold mines are important refractory gold ores. The previous results demonstrate that the carbonaceous matter is mainly composed of elemental carbon, organic acid and hydrocarbons. The dissolved aurocyanide complex is robbed by adsorption of carbonaceous matter, which is similar to activated carbon in cyanide leaching of gold. The pretreatment methods of carbonaceous gold ores were introduced, including high temperature roasting, bio-oxidation, chemical oxidation, competitive adsorption, barrier inhibition and microwave roasting. Recently, bio-oxidation was developed rapidly due to its advantages such as mild conditions, simple processes, low energy consumption and friendly environment. The known microorganisms related with bio-oxidation pretreatment mainly are chemolithotroph bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans. The researches on decomposing and passivating carbonaceous matter were commenced by Phanerochaete chrysosporium, Pseudomonadaceae and Streptomyces setonii. Finally, the main problems were analyzed and the application prospect of this technique was looked forward.展开更多
A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore ma...A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore mass ratio, and roasting temperature on Cr and Al extraction were studied. Experimental results indicate that the extraction rates of Cr and Al are up to 99%and 82%, respectively, under the optimal particle size of 44–74μm, Na2CO3-to-ore mass ratio of 0.6:1, and temperature of 1000 ℃. Dechromization within the range of 600–800 oC is controlled by the diffusion through the product layer with an apparent activation energy of 3.9 kJ/mol, and that it is controlled by the chemical reaction at the surface within the range of 900–1100 ℃ with an apparent activation energy of 54.3 kJ/mol. Besides, the Avrami diffusion controlled model with on apparent activation energy of 16.4 kJ/mol is most applicable for dealumination. Furthermore, 96.8%Ni and 95.6%Co could be extracted from the alkali-roasting residues in the subsequent pressure acid leaching process.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51974064,52174239,and 52374259)the Open Project of the Key Laboratory of Solid Waste Treatment and Resource Utiliza-tion of the Ministry of Education,China (No.23kfgk02).
文摘Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.
基金National Natural Science Foundation of China,No.82172196,No.82372507,and No.81971891.
文摘In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cells”,recently published in World Journal of Stem Cells.Despite over three decades of research on the clinical application of mesenchymal stem cells(MSCs),only a few therapeutic products have made it to clinical use,due to multiple preclinical and clinical challenges yet to be addressed.The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics,which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs.As we delve deeper into the intricacies of pretreat-ment methodologies,we anticipate a transformative shift in the landscape of MSC-based therapies,ultimately contributing to improved patient outcomes and advancing the field as a whole.
基金financially supported by the National Key R&D Program of China(No.2021YFC2101604)National Natural Science Foundation of China(No.22278339,21978248)Fujian Provincial Key Science and Technology Program of China(No.2022YZ037013)。
文摘The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification.
基金financially supported by the National Natural Science Foundation of China (22276140)the Shanghai Municipal Government State-Owned Assets Supervision and Administration Commission, China (2022028)the Key Research and Development Project of Zhejiang Province, China (2021C03024).
文摘Mechanical pretreatment is an indispensable process in biological treatment plants that remove plastics and other impurities from household biogenic waste(HBW).However,the imperfect separation of plastics in these pretreatment methods has raised concerns that they pose a secondary formation risk for microplastics(MPs).To validate this presumption,herein,quantities and properties of plastic debris and MPs larger than 50 μm were examined in the full chain of three different pretreatment methods in six plants.These facilities received HBW with or without prior depackaging at the source.The key points in the secondary formation of MPs were identified.Moreover,flux estimates of MPs were released,and an analysis of MPs sources was provided to develop an overview of their fate in HBW pretreatment.Pretreated output can contain a maximum of(1673±279) to(3198±263) MP particles per kilogram of wet weight(particles·kg^(-1)ww) for those undepackaged at source,and secondary MPs formation is primarily attributed to biomass crushers,biohydrolysis reactors,and rough shredders.Comparatively,HBW depackaged at the source can greatly reduce MPs by 8%-72%,regardless of pretreatment processes.Before pretreatment,4.6-205.6 million MP particles were present in 100 tonnes of HBW.MPs are produced at a rate of 741.11-33124.22 billion MP particles annually in anaerobic digester feedstock(ADF).This study demonstrated that HBW pretreatment is a competitive source of MPs and emphasized the importance of implementing municipal solid waste segregation at the source.Furthermore,depackaging biogenic waste at the source is recommended to substantially alleviate the negative effect of pretreatment on MPs formation.
基金supported by the National Natural Science Foundation of China(52276195)Program for Supporting Innovative Research from Jinan(202228072)Program of Agricultural Development from Shandong(SD2019NJ015)。
文摘Development of pore structures of activated carbon(AC)from activation of biomass with ZnCl_(2) relies on content and structure of cellulose/hemicellulose in the feedstock.Thermal pretreatment of biomass could induce dehydration and/or aromatization to change the structure of cellulose/hemicellulose.This might interfere with evolution of structures of AC,which was investigated herein via thermal pretreatment of willow branch(WB)from 200 to 360℃and the subsequent activation with ZnCl_(2) at 550℃.The results showed that thermal pretreatment at 360℃(WB-360)could lead to substantial pyrolysis to form biochar,with a yield of 31.9%,accompanying with nearly complete destruction of cellulose crystals and remarkably enhanced aromatic degree.However,cellulose residual in WB-360 could still be activated to form AC-360 with specific surface area of 1837.9 m~2·g^(-1),which was lower than that in AC from activation of untreated WB(AC-blank,2077.8 m~2·g^(-1)).Nonetheless,the AC-200 from activation of WB-200 had more developed pores(2113.9 m~2·g^(-1))and superior capability for adsorption of phenol,due to increased permeability of ZnCl_(2) to the largely intact cellulose structure in WB-200.The thermal pretreatment did increase diameters of micropores of AC but reduced the overall yield of AC(26.8%for AC-blank versus 18.0%for AC-360),resulting from accelerated cracking but reduced intensity of condensation.In-situ infrared characterization of the activation showed that ZnCl_(2) mainly catalyzed dehydration,dehydrogenation,condensation,and aromatization but not cracking,suppressing the formation of derivatives of cellulose and lignin in bio-oil.The thermal pretreatment formed phenolic-OH and C=O with higher chemical innerness,which changed the reaction network in activation,shifting morphology of fibrous structures in AC-blank to“melting surface”in AC-200 or AC-280.
基金Supported by the National Natural Science Foundation of China(No.82174444)the Chengdu University of Traditional Chinese Medicine Xinglin Scholar Discipline Talent Research Promotion Program Project(No.XKTD2022009)the Inheritance and Communication Department of Science and Technology Innovation Engineering Department of Chinese Academy of Chinese Medical Sciences(No.XJ2023001701).
文摘AIM:To investigate the antioxidant protective effect of Lycium barbarum glycopeptide(LbGP)pretreatment on retinal ischemia-reperfusion(I/R)injury(RIRI)in rats.METHODS:RIRI was induced in Sprague Dawley rats through anterior chamber perfusion,and pretreatment involved administering LbGP via gavage for 7d.After 24h of reperfusion,serum alanine aminotransferase(ALT),aspartate aminotransferase(AST),and creatinine(CREA)levels,retinal structure,expression of Caspase-3 and Caspase-8,superoxide dismutase(SOD)activity,and malondialdehyde(MDA)in the retina were measured.RESULTS:The pretreatment with LbGP effectively protected the retina and retinal tissue from edema and inflammation in the ganglion cell layer(GCL)and nerve fiber layer(NFL)of rats subjected to RIRI,as shown by light microscopy and optical coherence tomography(OCT).Serum AST was higher in the model group than in the blank group(P=0.042),but no difference was found in ALT,AST,and CREA across the LbGP groups and model group.Caspase-3 expression was higher in the model group than in the blank group(P=0.006),but no difference was found among LbGP groups and the model group.Caspase-8 expression was higher in the model group than in the blank group(P=0.000),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).SOD activity was lower in the model group than in the blank group(P=0.001),and the decrease was slower in the 400 mg/kg LbGP group than in the model group(P=0.003).MDA content was higher in the model group than in the blank group(P=0.001),and lower in the 400 mg/kg LbGP group than in the model group(P=0.016).The pretreatment with LbGP did not result in any observed liver or renal toxicity in the model.CONCLUSION:LbGP pretreatment exhibits dosedependent anti-inflammatory,and antioxidative effects by reducing Caspase-8 expression,preventing declines of SOD activity,and decreasing MDA content in the RIRI rat model.
基金supported by the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect.
基金supported by the National Natural Science Foundation of China(No.41276067)the Air Liquide(China)R&D Co.,Ltd.(No.20200216).
文摘The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited.
基金the National Key R&D Program of China(Nos.2018YFD0901506,2018YFD0900305)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018 SDKJ0406-3)。
文摘Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.
基金supported by grants from Shanghai Agriculture Applied Technology Development Program,China(Grant No.:2020-02-08-00-08-F01456)the Key Research and Development Program of Zhejiang Province,China(Grant No.:2020C02024-2).
文摘The application of pesticides (mostly insecticides and fungicides) during the tea-planting process will undoubtedly increase the dietary risk associated with drinking tea. Thus, it is necessary to ascertain whether pesticide residues in tea products exceed the maximum residue limits. However, the complex matrices present in tea samples comprise a major challenge in the analytical detection of pesticide residues. In this study, nine types of lateral flow immunochromatographic strips (LFICSs) were developed to detect the pesticides of interest (fenpropathrin, chlorpyrifos, imidacloprid, thiamethoxam, acetamiprid, carbendazim, chlorothalonil, pyraclostrobin, and iprodione). To reduce the interference of tea substrates on the assay sensitivity, the pretreatment conditions for tea samples, including the extraction solvent, extraction time, and purification agent, were optimized for the simultaneous detection of these pesticides. The entire testing procedure (including pretreatment and detection) could be completed within 30 min. The detected results of authentic tea samples were confirmed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which suggest that the LFICS coupled with sample rapid pretreatment can be used for on-site rapid screening of the target pesticide in tea products prior to their market release.
基金supported by the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF),funded by the Ministry of Science and ICT(RS-2023-00234757).
文摘Although hydrofluoric acid(HF)surface treatment is known to enhance the joining of metals with polymers,there is limited information on its effect on the joining of AZ31 alloy and carbon-fiber-reinforced plastics(CFRPs)through laser-assisted metal and plastic direct joining(LAMP).This study uses the LAMP technique to produce AZ31-CFRP joints.The joining process involves as-received AZ31,HFpretreated AZ31,and thermally oxidized HF-pretreated AZ31 alloy sheets.Furthermore,the bonding strength of joints prepared with thermally oxidized AZ31 alloy sheets is examined to ascertain the combined effect of HF treatment and thermal oxidation on bonding strength.The microstructures,surface chemical interactions,and mechanical performances of joints are investigated under tensile shear loading.Various factors,such as bubble formation,CFRP resin decomposition,and mechanical interlocking considerably affect joint strength.Additionally,surface chemical interactions between the active species on metal parts and the polar amide along with carbonyl groups of polymer play a significant role in improving joint strength.Joints prepared with surface-pretreated AZ31 alloy sheets show significant improvements in bonding strength.
基金the Indian Institute of Technology, Kharagpur, West Bengal, 721302, for providing technical and financial support for the research。
文摘Millets are widely recognized for their nutritional significance;however, the methods employed for their processing are currently lacking. This article primarily focuses on the advanced technologies and progressions in millet dehulling and polishing. These technologies operate based on the fundamental principles of compression-shearing, abrasion-friction, and centrifugal-impact forces. Processing of millets can be challenging because of the physical characteristics and tight attachment of hull and bran to the endosperm. However, several dehullers have been designed to solve this problem for different kinds of millets. In addition, the nutritional and anti-nutritional characteristics undergo alterations due to both dehulling and polishing processes. These alterations are thoroughly examined and discussed in this article. Specifically, anti-nutrients such as tannins and phytate are predominantly found in the outer pericarp of the grain and experience a reduction after undergoing dehulling and polishing. The nutritional properties are also subjected to a reduction;however, this reduction can be mitigated by subjecting the grains to certain pretreatments before dehulling and polishing. These treatments serve to enhance dehulling efficiency and nutrient digestibility while simultaneously reducing the presence of anti-nutrients. Novel thermal and non-thermal methodologies such as microwave, hydrothermal, high-pressure processing, and ohmic heating can be employed for processing millets, thereby diminishing the loss of nutrients. Additional research can be carried out to investigate their impact on the dehulling and polishing of millets.
文摘BACKGROUND Intestinal ischemia-reperfusion(I/R)injury(II/RI)is a critical condition that results in oxidative stress,inflammation,and damage to multiple organs.Zinc,an essential trace element,offers protective benefits in several tissues during I/R injury,but its effects on intestinal II/RI remain unclear.METHODS C57BL/6 mice were pretreated with zinc sulfate(ZnSO4,10 mg/kg)daily for three days before I/R injury was induced via superior mesenteric artery occlusion(SMAO)and abdominal aortic occlusion(AAO)models.Tissue and serum samples were collected to evaluate intestinal,liver,and kidney damage using Chiu’s score,Suzuki score,and histopathological analysis.Caco-2 cells and intestinal organoids were used for in vitro hypoxia-reoxygenation injury models to measure reactive oxygen species(ROS)and superoxide dismutase(SOD)levels.RESULTS Zinc pretreatment significantly reduced intestinal damage in the SMAO and AAO models(P<0.001).The serum levels of liver enzymes(alanine aminotransferase,aspartate aminotransferase)and kidney markers(creatinine and urea)were lower in the zinc-treated mice than in the control mice,indicating reduced hepatic and renal injury.In vitro,zinc decreased ROS levels and increased SOD activity in Caco-2 cells subject to hypoxia-reoxygenation injury.Intestinal organoids pretreated with zinc exhibited enhanced resilience to hypoxic injury compared to controls.CONCLUSION Zinc pretreatment mitigates II/RI and reduces associated multiorgan damage.These findings suggest that zinc has potential clinical applications in protecting against I/R injuries.
基金Supported by The Fourth Batch of High-end Talent Project in Hebei ProvinceSpecial Project of the Central Government in Guidance of Local Science and Technology Development(226Z5504G)Tangshan Talent Project(A202202005)。
文摘The QuEChERS extraction technique is a pretreatment technique that has been rapidly applied in recent years and is widely used in the field of pesticide residues with many advantages. This technique is based on solid phase extraction (SPE), which uses the interaction between adsorbent and impurities in the matrix to achieve the purpose of purification. The method has easier operation and better purification effect than SPE. In this paper, the research progress of the QuEChERS technique in pesticide residue detection in different fields in recent years and its future development were reviewed, hoping to provide reference for further development and utilization of the QuEChERS technique in pesticide residue detection in the future.
文摘The effect of pruning severity on tree growth was analyzed by change point detection using segmented regression. The present study applied this analysis to a well-known published data set including diameter growth response, tree age, pruning severity and pretreatment crown size. First, multiple regression analysis was performed to assess the effect of tree age, pruning severity and pretreatment crown size on diameter growth response. Next, segmented regression analysis was performed to assess the effect of pruning severity on diameter growth response. The results of the multiple regression showed that diameter growth response was significantly influenced by pruning severity and pretreatment crown size. The results of the segmented regression showed that in the whole data set, an abrupt change toward a decrease in diameter growth response was detected at 25% of the live crown removed. However, in the group of fully crowned and open-grown, diameter growth response continuously decreased with increasing pruning severity with no significant abrupt change, whereas in the group of 70% - 90% live crown, diameter growth response did not significantly decrease up to the break point (53% crown removed) and then abruptly decreased. This may be the first study to show the numerical evaluation of the effect of pruning severity on tree growth by change point analysis.
基金Supported by the National Key Technology R&D Program during the11~(th)five-year Plan(2007BAD34B03)the Important Project of Ministryof Education(107127)Scientific Research Foundation ofHefei University of Technology(113-036404)~~
文摘[ Objective] The aim was to study pretreatment of ultrasound enhancing dilute H2SO4 on cellulase activity of corn straw liquid fermentation and explore the pretretment' s optimal conditions. [ Method ] By using orthogonal test, the pretretment of ultrasound enhancing dilute H2SO4 on corn straw was studied, then straw was fermented as the sole carbon source. Finally, the cellulase activity in extracellular fermentation broth was determined. [Result] The results showed that cellulase activity in extracellular broth was greatest under the conditions of acid bath time 3 h, acid concentration 3.5%, ultrasonic power 150 W, and ultrasonic time 5 h. They were FPA 15.82 U/ml, Cx 39.9 U/ml, 13-Giu 55.94 U/ml respectively. [ Conclusion] Under the above conditions, extracellular cellulase production has a high stability.
基金Projects(50974114,51174060) supported by National Natural Science Foundation of ChinaProject(2008AA03Z512) supported by High-tech Research and Development Program of ChinaProject(20070145049) supported by PhD Programs Foundation of Ministry of Education of China
文摘Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.
文摘It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.
基金Projects(51174062,51104036)supported by the National Natural Science Foundation of ChinaProject(2012BAE06B05)supported by the National Science and Technology Support Program of China during the 12th Five-Year Plan Period+1 种基金Projects(2012AA061502,2012AA061501)supported by the National High-Tech Research and Development Program of ChinaProjects(N120602006,N110302002,N110602005)supported by Fundamental Research Funds for the Central Universities of China
文摘Carbonaceous gold mines are important refractory gold ores. The previous results demonstrate that the carbonaceous matter is mainly composed of elemental carbon, organic acid and hydrocarbons. The dissolved aurocyanide complex is robbed by adsorption of carbonaceous matter, which is similar to activated carbon in cyanide leaching of gold. The pretreatment methods of carbonaceous gold ores were introduced, including high temperature roasting, bio-oxidation, chemical oxidation, competitive adsorption, barrier inhibition and microwave roasting. Recently, bio-oxidation was developed rapidly due to its advantages such as mild conditions, simple processes, low energy consumption and friendly environment. The known microorganisms related with bio-oxidation pretreatment mainly are chemolithotroph bacteria such as Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans. The researches on decomposing and passivating carbonaceous matter were commenced by Phanerochaete chrysosporium, Pseudomonadaceae and Streptomyces setonii. Finally, the main problems were analyzed and the application prospect of this technique was looked forward.
基金Project(51125018)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(51204153)supported by the National Natural Science Foundation of ChinaProject(2011BAC06B07)supported by the National High Technology Research and Development Program,China
文摘A novel process was proposed for the activation pretreatment of limonitic laterite ores by Na2CO3 roasting. Dechromization and dealumination kinetics of the laterite ores and the effect of particle size, Na2CO3-ore mass ratio, and roasting temperature on Cr and Al extraction were studied. Experimental results indicate that the extraction rates of Cr and Al are up to 99%and 82%, respectively, under the optimal particle size of 44–74μm, Na2CO3-to-ore mass ratio of 0.6:1, and temperature of 1000 ℃. Dechromization within the range of 600–800 oC is controlled by the diffusion through the product layer with an apparent activation energy of 3.9 kJ/mol, and that it is controlled by the chemical reaction at the surface within the range of 900–1100 ℃ with an apparent activation energy of 54.3 kJ/mol. Besides, the Avrami diffusion controlled model with on apparent activation energy of 16.4 kJ/mol is most applicable for dealumination. Furthermore, 96.8%Ni and 95.6%Co could be extracted from the alkali-roasting residues in the subsequent pressure acid leaching process.