期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A new artificial immune algorithm and its application for optimization problems 被引量:1
1
作者 于志刚 宋申民 段广仁 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2006年第2期129-133,共5页
A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods ... A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods of affinity measure evaluated are used, controlling the antibody diversity and the speed of convergence separately. The model proposed focuses on a systemic view of the immune system and takes into account cell-cell interactions denoted by antibody affinity. The antibody concentration defined in the immune network model is responsible directly for its activity in the immune system. The model introduces not only a term describing the network dynamics, but also proposes an independent term to simulate the dynamics of the antigen population. The antibodies' evolutionary processes are controlled in the algorithms by utilizing the basic properties of the immune network. Computational amount and effect is a pair of contradictions. In terms of this problem, the AIA regulating the parameters easily attains a compromise between them. At the same time, AIA can prevent premature convergence at the cost of a heavy computational amount (the iterative times). Simulation illustrates that AIA is adapted to solve optimization problems, emphasizing muhimodal optimization. 展开更多
关键词 artificial immune network optimization algorithm preventing premature convergence.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部