The black soil region of Northeast China is one of the most important food production bases and commodity grain bases in China. However, the continual loss and degradation of precious black soil resources has led to d...The black soil region of Northeast China is one of the most important food production bases and commodity grain bases in China. However, the continual loss and degradation of precious black soil resources has led to direct threats to national food security and regional sustainable development. Therefore, it is necessary to summarize integrated prevention and control experience of small watersheds in black soil region of Northeast China. Tongshuang small watershed, a typical watershed in rolling hills of typical black soil areas in Northeast China, is selected as the study area. Based on nearly 50 years' experience in prevention and control of soil and water loss, the structures and overall benefits of an integrated prevention and control system for soil and water loss are investigated. Then, the 'three defense lines' tri-dimensional protection system with reasonable allocation of different types of soil and water control measures from the hill top to gully is systematically analyzed. The first line on the top hill can weaken and block uphill runoff and sediment, hold water resources and improve soil property. The second line on the hill can truncate slope length, slow down the runoff velocity and reduce erosion energy. The third line in the gully is mainly composed of waterfall engineering, which can inhibit soil erosion and restore land resources. The 'three defense lines' system is feasible for soil and water loss control of small watersheds in the typical black soil region of Northeast China. Through the application of the in Tongshuang small watershed, There are effective improvements in ecological conditions in Tongshuang small watershed after the application of 'three defense lines' soil and water control system. Moreover, the integrated treatment paradigm for soil and water loss in typical black soil region is compared with that in loess region. The results of this study could offer references and experiences for other small watersheds in typical black soil region of Northeast China.展开更多
This study investigated the competency improvement needs of farmers in soil erosion prevention and control for enhancing crop production in Kogi state of Nigeria and was carried out between January and June, 2014. The...This study investigated the competency improvement needs of farmers in soil erosion prevention and control for enhancing crop production in Kogi state of Nigeria and was carried out between January and June, 2014. The study adopted descriptive survey research design and was guided by two research questions. The study found out that farmers needed improvement on 37 cultural practices as follows: 10 competencies in mulching, 12 in cover cropping, 8 in strip cropping, 7 in contour farming and 45 mechanical field practice as follows: 10 competencies in contour bonding, 11 in terracing, 12 in channeling and 11 in tunneling for success in soil erosion prevention and control. The study recommended the organization of rural based programmes for the training of farmers in the practice identified to enhance their competencies in soil erosion prevention and control for increased crop production.展开更多
According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and devel...According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.展开更多
To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) metho...To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) methods. A distributed hydrological model was developed, and watershed parameters were determined based on satellite imagery, digital terrain models, digital maps and field investigations. Two types of erosion control measures were investigated: the variation of vegetation covers and the change of cultivation techniques. Seven scenarios were considered for the test watershed. The results show: (1) while the de-vegetation results in the increase of peak discharge, the improve of vegetation covers decreases peak discharge at watershed scale; (2) by both improving vegetation cover and enhancing terrace-cultivation technology, the peak discharge is reduced and the peak flow arrival time is delayed; (3) attention should be attached to both early warning system and measures changing the underlying surface and conveyance systems.展开更多
In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has receiv...In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has received widespread attention and application worldwide.However,during the construction and operation of mountain photovoltaic power generation projects,water and soil erosion has become a major challenge,which not only restricts the sustainable development process of the project,but also has a significant negative impact on the local ecological environment.This article deeply analyzes the multiple causes,extensive impacts and effective prevention and control strategies of water and soil erosion in mountain photovoltaic power generation projects.The results show that rainfall intensity,terrain slope,soil type and vegetation coverage are the four key factors leading to soil erosion.Soil erosion not only causes a sharp decline in soil fertility,but also aggravates the problem of sediment deposition in rivers and reservoirs,and poses a direct threat to the stability and operating efficiency of photovoltaic equipment.In order to deal with the above problems,this paper innovatively puts forward a series of soil and water conservation technologies,covering multiple dimensions such as engineering measures,plant measures,farming measures and temporary measures,and deeply discusses the application models and management strategies of these measures in key stages such as planning and design,construction,operation and maintenance.Through specific case analysis,the successful practical experience of soil and water conservation is refined and summarized,and the key role of community cooperation,technical support and modern monitoring technology in preventing and controlling soil and water erosion is further emphasized.This article aims to achieve a win-win situation of ecological environment protection and energy development and utilization through scientific planning and effective governance,and contribute to the construction of a green,low-carbon,and sustainable energy system.展开更多
Ecological environment issues caused by soil erosion have always been the attractive and significant problems all over the world.Under the background of global warming,debris flow,landslide,and other intense gravitati...Ecological environment issues caused by soil erosion have always been the attractive and significant problems all over the world.Under the background of global warming,debris flow,landslide,and other intense gravitational erosion activities have become aggravated,which leads to the decrease of biological diversity,ecosystem stability,resistance,productivity,and the like,which presents new challenges to traditional measures of soil and water conservation.This article,based on research conducted on controlling mountain hazard on the Xiaojiang River basin over the last 30 years,summarizes the managerial achievement of typical ecological engineering technologies and analyzes the principles and application of each type of treatment.The results indicated that established ecological engineering technologies play a significant role in the prevention and treatment of intense gravitational erosion caused by mountain hazard.However,there are still a great deal of limitation of application condition and maneuverability during management process.How to furtherly develop the rational combining pattern between ecological engineering(e.g.contour hedgerow)and geotechnical engineering(e.g.slit dam)and how to strengthen the risk control and improve management strategy will be the key points for preventing intense gravitational erosion in future by ecological engineering.展开更多
基金Supported by the National Natural Science Foundation of China,Science Foundation for Youths ( 41001165,40901133,30901163)
文摘The black soil region of Northeast China is one of the most important food production bases and commodity grain bases in China. However, the continual loss and degradation of precious black soil resources has led to direct threats to national food security and regional sustainable development. Therefore, it is necessary to summarize integrated prevention and control experience of small watersheds in black soil region of Northeast China. Tongshuang small watershed, a typical watershed in rolling hills of typical black soil areas in Northeast China, is selected as the study area. Based on nearly 50 years' experience in prevention and control of soil and water loss, the structures and overall benefits of an integrated prevention and control system for soil and water loss are investigated. Then, the 'three defense lines' tri-dimensional protection system with reasonable allocation of different types of soil and water control measures from the hill top to gully is systematically analyzed. The first line on the top hill can weaken and block uphill runoff and sediment, hold water resources and improve soil property. The second line on the hill can truncate slope length, slow down the runoff velocity and reduce erosion energy. The third line in the gully is mainly composed of waterfall engineering, which can inhibit soil erosion and restore land resources. The 'three defense lines' system is feasible for soil and water loss control of small watersheds in the typical black soil region of Northeast China. Through the application of the in Tongshuang small watershed, There are effective improvements in ecological conditions in Tongshuang small watershed after the application of 'three defense lines' soil and water control system. Moreover, the integrated treatment paradigm for soil and water loss in typical black soil region is compared with that in loess region. The results of this study could offer references and experiences for other small watersheds in typical black soil region of Northeast China.
文摘This study investigated the competency improvement needs of farmers in soil erosion prevention and control for enhancing crop production in Kogi state of Nigeria and was carried out between January and June, 2014. The study adopted descriptive survey research design and was guided by two research questions. The study found out that farmers needed improvement on 37 cultural practices as follows: 10 competencies in mulching, 12 in cover cropping, 8 in strip cropping, 7 in contour farming and 45 mechanical field practice as follows: 10 competencies in contour bonding, 11 in terracing, 12 in channeling and 11 in tunneling for success in soil erosion prevention and control. The study recommended the organization of rural based programmes for the training of farmers in the practice identified to enhance their competencies in soil erosion prevention and control for increased crop production.
文摘According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.
文摘To investigate the effects of various erosion control measures on mountain floods, a case study was conducted in Censhui River South Branch Watershed using scenario analysis and soil conservation service (SCS) methods. A distributed hydrological model was developed, and watershed parameters were determined based on satellite imagery, digital terrain models, digital maps and field investigations. Two types of erosion control measures were investigated: the variation of vegetation covers and the change of cultivation techniques. Seven scenarios were considered for the test watershed. The results show: (1) while the de-vegetation results in the increase of peak discharge, the improve of vegetation covers decreases peak discharge at watershed scale; (2) by both improving vegetation cover and enhancing terrace-cultivation technology, the peak discharge is reduced and the peak flow arrival time is delayed; (3) attention should be attached to both early warning system and measures changing the underlying surface and conveyance systems.
文摘In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has received widespread attention and application worldwide.However,during the construction and operation of mountain photovoltaic power generation projects,water and soil erosion has become a major challenge,which not only restricts the sustainable development process of the project,but also has a significant negative impact on the local ecological environment.This article deeply analyzes the multiple causes,extensive impacts and effective prevention and control strategies of water and soil erosion in mountain photovoltaic power generation projects.The results show that rainfall intensity,terrain slope,soil type and vegetation coverage are the four key factors leading to soil erosion.Soil erosion not only causes a sharp decline in soil fertility,but also aggravates the problem of sediment deposition in rivers and reservoirs,and poses a direct threat to the stability and operating efficiency of photovoltaic equipment.In order to deal with the above problems,this paper innovatively puts forward a series of soil and water conservation technologies,covering multiple dimensions such as engineering measures,plant measures,farming measures and temporary measures,and deeply discusses the application models and management strategies of these measures in key stages such as planning and design,construction,operation and maintenance.Through specific case analysis,the successful practical experience of soil and water conservation is refined and summarized,and the key role of community cooperation,technical support and modern monitoring technology in preventing and controlling soil and water erosion is further emphasized.This article aims to achieve a win-win situation of ecological environment protection and energy development and utilization through scientific planning and effective governance,and contribute to the construction of a green,low-carbon,and sustainable energy system.
文摘Ecological environment issues caused by soil erosion have always been the attractive and significant problems all over the world.Under the background of global warming,debris flow,landslide,and other intense gravitational erosion activities have become aggravated,which leads to the decrease of biological diversity,ecosystem stability,resistance,productivity,and the like,which presents new challenges to traditional measures of soil and water conservation.This article,based on research conducted on controlling mountain hazard on the Xiaojiang River basin over the last 30 years,summarizes the managerial achievement of typical ecological engineering technologies and analyzes the principles and application of each type of treatment.The results indicated that established ecological engineering technologies play a significant role in the prevention and treatment of intense gravitational erosion caused by mountain hazard.However,there are still a great deal of limitation of application condition and maneuverability during management process.How to furtherly develop the rational combining pattern between ecological engineering(e.g.contour hedgerow)and geotechnical engineering(e.g.slit dam)and how to strengthen the risk control and improve management strategy will be the key points for preventing intense gravitational erosion in future by ecological engineering.