This letter presents a k-party RSA key sharing scheme and the related algorithms are presented. It is shown that the shared key can be generated in such a collaborative way that the RSA modulus is publicly known but n...This letter presents a k-party RSA key sharing scheme and the related algorithms are presented. It is shown that the shared key can be generated in such a collaborative way that the RSA modulus is publicly known but none of the parties is able to decrypt the enciphered message individually.展开更多
We briefly survey a number of important recent uchievements in Theoretical Computer Science (TCS), especially Computational Complexity Theory. We will discuss the PCP Theorem, its implications to inapproximability o...We briefly survey a number of important recent uchievements in Theoretical Computer Science (TCS), especially Computational Complexity Theory. We will discuss the PCP Theorem, its implications to inapproximability on combinatorial optimization problems; space bounded computations, especially deterministic logspace algorithm for undirected graph connectivity problem; deterministic polynomial-time primality test; lattice complexity, worst-case to average-case reductions; pseudorandomness and extractor constructions; and Valiant's new theory of holographic algorithms and reductions.展开更多
基金Supported by the National Natural Science Foundation of China (No.69825102)
文摘This letter presents a k-party RSA key sharing scheme and the related algorithms are presented. It is shown that the shared key can be generated in such a collaborative way that the RSA modulus is publicly known but none of the parties is able to decrypt the enciphered message individually.
文摘We briefly survey a number of important recent uchievements in Theoretical Computer Science (TCS), especially Computational Complexity Theory. We will discuss the PCP Theorem, its implications to inapproximability on combinatorial optimization problems; space bounded computations, especially deterministic logspace algorithm for undirected graph connectivity problem; deterministic polynomial-time primality test; lattice complexity, worst-case to average-case reductions; pseudorandomness and extractor constructions; and Valiant's new theory of holographic algorithms and reductions.