Lithium primary batteries are widely used in various fields where high energy densities and long storage times are in demand.However,studies on lithium primary batteries are currently focused on the gravimetric energy...Lithium primary batteries are widely used in various fields where high energy densities and long storage times are in demand.However,studies on lithium primary batteries are currently focused on the gravimetric energy densities of active materials and rarely account for the volumetric energy requirements of unmanned devices.Herein,CuF_(2)/CF_(x) composites are prepared via planetary ball milling(PBM)to improve the volumetric energy densities of lithium primary batteries using the high mass density of CuF_(2),achieving a maximum volumetric energy density of 4163.40 Wh L^(-1).The CuF_(2)/CF_(x) hybrid cathodes exhibit three distinct discharge plateaus rather than simple combinations of the discharge curves of their components.This phenomenon is caused by charge redistribution and lattice modulation on the contact surfaces of CuF_(2) and CF_(x) during PBM,which change the valence state of Cu and modify the electronic structures of the composites.As a result,CuF_(2)/CF_(x) hybrid cathodes exhibit unique discharge behaviors and improved rate capabilities,delivering a maximum power density of 11.16 kW kg^(-1)(25.56 kW L^(-1)).Therefore,it is a promising strategy to further improve the comprehensive performance of lithium primary batteries through the use of interfacial optimization among different fluoride cathodes.展开更多
Aqueous Zn-ion battery(AZIB)has become an attractive technology because of its unique features of low cost,high safety and the eco-friendliness.MnO_(2) is the model cathode material for AZIB since the first report on ...Aqueous Zn-ion battery(AZIB)has become an attractive technology because of its unique features of low cost,high safety and the eco-friendliness.MnO_(2) is the model cathode material for AZIB since the first report on reversible Zn-MnO_(2) battery,but recent studies have unveiled different charge storage mechanisms.Due to revamping of the electrochemistry and redesigning of the electrolyte and interface,there is tremendous performance enhancement in AZIB.This mini Review will first give a brief introduction of ZIB,including fundamentals of materials and components,and the progress in recent years.Then,a general classification of working mechanisms related to MnO_(2) in neutral and mildly acidic electrolyte is elaborated.Our focus is put on the recent blossoming Zn-MnO_(2) electrolytic mechanism,which has given birth to the Zn-MnO_(2) redox flow batteries that are highly promising for large-scale static energy storage.展开更多
Forming an ultrathin conducting layer on a fluorinated carbon(CFx)surface for reducing severe electrochemical polarization in lithium/fluorinated carbon primary batteries(Li/CF_(x))remains a considerable challenge for...Forming an ultrathin conducting layer on a fluorinated carbon(CFx)surface for reducing severe electrochemical polarization in lithium/fluorinated carbon primary batteries(Li/CF_(x))remains a considerable challenge for achieving batteries with excellent rate capability.Herein,CFxwas modified by using acetylene/argon mixture plasma combined with MnO_(2)particles.The CF_(x)/C/MnO_(2)composite effectively reduced the voltage hysteresis and improved the electrochemical performance of Li/CF_(x).The excellent rate performance of CF_(x)/C/MnO_(2)was due to the high electrochemical activity provided by the atomicscale conductive carbon layer and ultrafine MnO_(2)particles.Compared with pristine CF_(x),the charge transfer resistance of the optimized CF_(x)/C/MnO_(2)decreased from 218.5 to 48.2Ω,the discharge rate increased from 2C to 10C,and the power density increased from 3.11 to 13.44 kW·g^(-1),The intrinsic reason for the enhanced rate performance was attributed to the fact that the ultrathin carbon layer acted as a conductive bridge to reduce the voltage hysteresis at the initial stage of the Li/CF_(x)discharge,and the high electrochemical activity of the ultrafine MnO_(2)particles provided a faster lithium-ion diffusion rate.展开更多
Chronic systemic inflammation in obesity-associated type 2 diabetes (T2D) is a key inducing factor of insulin resistance (IR). Hydrogen molecule (H2) has been proved to be a safe and effective anti-inflammatory agent,...Chronic systemic inflammation in obesity-associated type 2 diabetes (T2D) is a key inducing factor of insulin resistance (IR). Hydrogen molecule (H2) has been proved to be a safe and effective anti-inflammatory agent, but conventional H2 administration methods cannot provide a high dosage and a long duration of H2 treatment in IR-related tissues and thus lead to limited therapeutic efficacies. We here propose a new strategy of controlled H2 release to match the time window of gastric emptying for maximizing the bioavailability and therapeutic outcome of H2. This work enhances the hydrolysis rate of Zn by constructing a Zn-Fe primary-battery micro-/ nano-structure, and the H2-releasing rate is adjusted by tuning the ratio of Zn to Fe. The Zn-Fe micro-/nano-structure is orally administrated once daily to alleviate obesity-associated T2D in a leptin-deficient (ob/ob) mouse model. The H2 generation time of the Zn-Fe primary-battery micro-/nano-structure with the Fe/Zn ratio of 1:100 in gastric acid is about 3 h, just matching with the time window of gastric emptying in mice. In vivo monitoring results show that H2 generated by Zn-Fe micro-/nano-structure in stomach can effectively accumulate in major IR-sited tissues including liver, adipose tissue, and skeletal muscle at a high dose for a relatively long time compared to H2-rich water drinking. Oral administration of Zn-Fe micro-/nano-structure at 200 mg/kg body weight has realized an efficient IR improvement and remarkably ameliorated systemic inflammation in ob/ ob mice. In addition, a high-dose administration of Zn-Fe shows no visible toxicity in mice. This work provides a new strategy to maximize the outcome of hydrogen therapy.展开更多
In this work,two kinds of primary batteries,both of which included a Zn anode,C rod cathode,copper wire and electrolyte composed of Cd^(2+)-contaminated water or soil,were constructed in the first attempt to both remo...In this work,two kinds of primary batteries,both of which included a Zn anode,C rod cathode,copper wire and electrolyte composed of Cd^(2+)-contaminated water or soil,were constructed in the first attempt to both remove Cd^(2+)and generate electricity.Unlike traditional technologies such as electrokinetic remediation with high energy consumption,this technology could realize Cd^(2+)migration to aggregation and solidification and generate energy at the same time through simultaneous galvanic reactions.The passive surface of Zn and C was proven via electrochemical measurements to be porous to maintain the relatively active galvanic reactions for continuous Cd^(2+)precipitation.Cd^(2+)RE(removal efficiency)and electricity generation were investigated under different conditions,based on which two empirical models were established to predict them successfully.In soil,KCl was added to desorb Cd^(2+) from soil colloids to promote Cd^(2+) removal.These systems were also proven to remove Cd^(2+) efficiently when their effects on plants,zebrafish,and the soil bacterial community were tested.LEDs could be lit for days by utilizing the electricity produced herein.This work provides a novel,green,and low-cost route to remediate Cd^(2+) contamination and generate electricity simultaneously,which is of extensive practical significance in the environmental and energy fields.展开更多
Stretchable electronics are in high demand for next-generation wearable devices, but their fabrication is still challenging. Stretchable conductors, flexible pressure sensors, and foldable light-emitting diodes (LEDs...Stretchable electronics are in high demand for next-generation wearable devices, but their fabrication is still challenging. Stretchable conductors, flexible pressure sensors, and foldable light-emitting diodes (LEDs) have been reported; however, the fabrication of stable stretchable batteries, as power suppliers for wearable devices, is significantly behind the development of other stretchable electronics. Several stretchable lithium-ion batteries and primary batteries have been fabricated, but their low capacities and complicated manufacturing processes are obstacles for practical applications. Herein, we report a stretchable zinc/manganese-oxide (Zn-MnO2) full battery based on a silver-nanowire- coated sponge prepared via a facile dip-coating process. The spongy electrode, with a three-dimensional (3D) binary network structure, provided not only high conductivity and stretchability, but also enabled a high mass loading of electrochemically active materials (Zn and MnO2 particles). The fabricated Zn-MnO2 battery exhibited an areal capacity as high as 3.6 mAh·cm^-2 and could accommodate tensile strains of up to 100% while retaining 89% of its original capacity. The facile solution-based strategy of dip-coating active materials onto a cheap sponge-based stretchable current collector opens up a new avenue for fabricating stretchable batteries.展开更多
In this paper,we report on the morphology-controlled synthesis of magnesium micro/nanospheres and their electrochemical performance as the anode of primary Mg/MnO_(2) batteries.Mg micro/nanoscale materials with contro...In this paper,we report on the morphology-controlled synthesis of magnesium micro/nanospheres and their electrochemical performance as the anode of primary Mg/MnO_(2) batteries.Mg micro/nanoscale materials with controllable shapes have been prepared via a conventional vapor-transport method under an inert atmosphere by adjusting the deposition temperatures.Extensive analysis techniques including SEM,XRD,TEM/HRTEM,and Brunauer Emmett Teller(BET)were carried out to characterize the as-obtained samples.The results show that the Mg samples are microspheres or micro/nanospheres with specific surface areas of 0.611.92 m^(2)/g.The electrochemical properties of the as-prepared Mg and commercial Mg powders were further studied in terms of their linear sweep voltammograms,impedance spectra,and discharge capability.By comparing the performance of different inhibitors in electrolytes,it was found that NaNO2(2.6 mol/L)as an inhibitor in the Mg(NO_(3))_(2)(2.6 mol/L)electrolyte affords a Mg electrode with high current density and low corrosion rate.In particular,the Mg sample consisting of microspheres with a diameter of 1.53.0μm and nanospheres with a diameter of 50150 nm exhibited superior electrode properties including negative initial potential(1.08 V),high current density(163 mA/cm^(2)),low apparent activation energy(5.1 kJ/mol),and high discharge specifi c capacity(784 mAh/g).The mixture of Mg nanospheres and microspheres is promising for application in primary Mg/MnO_(2) batteries because of the suffi cient contact with the electrolyte and greatly reduced charge transfer impedance and polarization.展开更多
In this paper,a particular standard MicroGrid(MG)is accurately simulated in the presence of the Electric Vehicles(EVs)participating in decentralized primary frequency control service.It examines effect of number of th...In this paper,a particular standard MicroGrid(MG)is accurately simulated in the presence of the Electric Vehicles(EVs)participating in decentralized primary frequency control service.It examines effect of number of the participating EVs on the short-term dynamic behaviour.The simulation results confirm that frequency deviation will not definitely become zero even though an unlimited number of the EVs participate.The output power of each EV is determined according to the frequency deviation.On the other hand,the output power of each EV affects the value of the frequency deviation,especially in small-scale MGs and MGs with predominant inductance behaviour.Eventually,an equilibrium point is reached after a new EV is added that depends on the characteristics of the MG and the functions executed in the MG central controller during such a service.Additionally,effect of Reflex method,an advanced charging technique for EVs,on the frequency deviation is examined.展开更多
基金financially supported by the National Key R&D Program of China(No.2016YFA0202302)the State Key Program of National Natural Science Foundation of China(Nos.51633007 and 52130303)the National Natural Science Foundation of China(Nos.51773147 and 51973151).
文摘Lithium primary batteries are widely used in various fields where high energy densities and long storage times are in demand.However,studies on lithium primary batteries are currently focused on the gravimetric energy densities of active materials and rarely account for the volumetric energy requirements of unmanned devices.Herein,CuF_(2)/CF_(x) composites are prepared via planetary ball milling(PBM)to improve the volumetric energy densities of lithium primary batteries using the high mass density of CuF_(2),achieving a maximum volumetric energy density of 4163.40 Wh L^(-1).The CuF_(2)/CF_(x) hybrid cathodes exhibit three distinct discharge plateaus rather than simple combinations of the discharge curves of their components.This phenomenon is caused by charge redistribution and lattice modulation on the contact surfaces of CuF_(2) and CF_(x) during PBM,which change the valence state of Cu and modify the electronic structures of the composites.As a result,CuF_(2)/CF_(x) hybrid cathodes exhibit unique discharge behaviors and improved rate capabilities,delivering a maximum power density of 11.16 kW kg^(-1)(25.56 kW L^(-1)).Therefore,it is a promising strategy to further improve the comprehensive performance of lithium primary batteries through the use of interfacial optimization among different fluoride cathodes.
基金supported by West Light Foundation of The Chinese Academy of Sciences(XAB2019AW09)Singapore Ministry of Education Tier 1 grants(RG 10/18,RG 157/19)。
文摘Aqueous Zn-ion battery(AZIB)has become an attractive technology because of its unique features of low cost,high safety and the eco-friendliness.MnO_(2) is the model cathode material for AZIB since the first report on reversible Zn-MnO_(2) battery,but recent studies have unveiled different charge storage mechanisms.Due to revamping of the electrochemistry and redesigning of the electrolyte and interface,there is tremendous performance enhancement in AZIB.This mini Review will first give a brief introduction of ZIB,including fundamentals of materials and components,and the progress in recent years.Then,a general classification of working mechanisms related to MnO_(2) in neutral and mildly acidic electrolyte is elaborated.Our focus is put on the recent blossoming Zn-MnO_(2) electrolytic mechanism,which has given birth to the Zn-MnO_(2) redox flow batteries that are highly promising for large-scale static energy storage.
基金financially supported by the National Natural Science Foundation of China(No.51972045)the Fundamental Research Funds for the Chinese Central Universities,China(No.ZYGX2019J025)。
文摘Forming an ultrathin conducting layer on a fluorinated carbon(CFx)surface for reducing severe electrochemical polarization in lithium/fluorinated carbon primary batteries(Li/CF_(x))remains a considerable challenge for achieving batteries with excellent rate capability.Herein,CFxwas modified by using acetylene/argon mixture plasma combined with MnO_(2)particles.The CF_(x)/C/MnO_(2)composite effectively reduced the voltage hysteresis and improved the electrochemical performance of Li/CF_(x).The excellent rate performance of CF_(x)/C/MnO_(2)was due to the high electrochemical activity provided by the atomicscale conductive carbon layer and ultrafine MnO_(2)particles.Compared with pristine CF_(x),the charge transfer resistance of the optimized CF_(x)/C/MnO_(2)decreased from 218.5 to 48.2Ω,the discharge rate increased from 2C to 10C,and the power density increased from 3.11 to 13.44 kW·g^(-1),The intrinsic reason for the enhanced rate performance was attributed to the fact that the ultrathin carbon layer acted as a conductive bridge to reduce the voltage hysteresis at the initial stage of the Li/CF_(x)discharge,and the high electrochemical activity of the ultrafine MnO_(2)particles provided a faster lithium-ion diffusion rate.
基金supported by the National Natural Science Foundation of China[82172078,81770855,82200508]Academic Promotion Programme of Shandong First Medical University[2019QL010]+1 种基金National Key Research and Development Program of China[2022YFB3804500]Shenzhen Science and Technology Program[RCJC20210706092010008].
文摘Chronic systemic inflammation in obesity-associated type 2 diabetes (T2D) is a key inducing factor of insulin resistance (IR). Hydrogen molecule (H2) has been proved to be a safe and effective anti-inflammatory agent, but conventional H2 administration methods cannot provide a high dosage and a long duration of H2 treatment in IR-related tissues and thus lead to limited therapeutic efficacies. We here propose a new strategy of controlled H2 release to match the time window of gastric emptying for maximizing the bioavailability and therapeutic outcome of H2. This work enhances the hydrolysis rate of Zn by constructing a Zn-Fe primary-battery micro-/ nano-structure, and the H2-releasing rate is adjusted by tuning the ratio of Zn to Fe. The Zn-Fe micro-/nano-structure is orally administrated once daily to alleviate obesity-associated T2D in a leptin-deficient (ob/ob) mouse model. The H2 generation time of the Zn-Fe primary-battery micro-/nano-structure with the Fe/Zn ratio of 1:100 in gastric acid is about 3 h, just matching with the time window of gastric emptying in mice. In vivo monitoring results show that H2 generated by Zn-Fe micro-/nano-structure in stomach can effectively accumulate in major IR-sited tissues including liver, adipose tissue, and skeletal muscle at a high dose for a relatively long time compared to H2-rich water drinking. Oral administration of Zn-Fe micro-/nano-structure at 200 mg/kg body weight has realized an efficient IR improvement and remarkably ameliorated systemic inflammation in ob/ ob mice. In addition, a high-dose administration of Zn-Fe shows no visible toxicity in mice. This work provides a new strategy to maximize the outcome of hydrogen therapy.
基金the Plan of Anhui Major Provincial Science and Technology Project(202203a06020001)the University Synergy Innovation Program of Anhui Province(GXXT-2021-059)+4 种基金the National Natural Science Foundation of China(31771284,52000025)the Key R&D Program of Guangdong Province(2020B0202010005)the Fundamental Research Funds for the Central Universities(2232020D-22)the Key R&D Program of Inner Mongolia Autonomous Region(2021GG0300)the Open Research Fund of Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province and the Open Research Fund of Key Laboratory of High Magnetic Field and Ion Beam Physical Biology。
文摘In this work,two kinds of primary batteries,both of which included a Zn anode,C rod cathode,copper wire and electrolyte composed of Cd^(2+)-contaminated water or soil,were constructed in the first attempt to both remove Cd^(2+)and generate electricity.Unlike traditional technologies such as electrokinetic remediation with high energy consumption,this technology could realize Cd^(2+)migration to aggregation and solidification and generate energy at the same time through simultaneous galvanic reactions.The passive surface of Zn and C was proven via electrochemical measurements to be porous to maintain the relatively active galvanic reactions for continuous Cd^(2+)precipitation.Cd^(2+)RE(removal efficiency)and electricity generation were investigated under different conditions,based on which two empirical models were established to predict them successfully.In soil,KCl was added to desorb Cd^(2+) from soil colloids to promote Cd^(2+) removal.These systems were also proven to remove Cd^(2+) efficiently when their effects on plants,zebrafish,and the soil bacterial community were tested.LEDs could be lit for days by utilizing the electricity produced herein.This work provides a novel,green,and low-cost route to remediate Cd^(2+) contamination and generate electricity simultaneously,which is of extensive practical significance in the environmental and energy fields.
基金We acknowledge the funding support from the National Natural Science Foundation of China (Nos. 21431006 and 21761132008), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 21521001), Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW- SLH036), the National Basic Research Program of China (No. 2014CB931800), and the Users with Excellence and Scientific Research Grant of Hefei Science Center of CAS (No. 2015HSC-UE007).
文摘Stretchable electronics are in high demand for next-generation wearable devices, but their fabrication is still challenging. Stretchable conductors, flexible pressure sensors, and foldable light-emitting diodes (LEDs) have been reported; however, the fabrication of stable stretchable batteries, as power suppliers for wearable devices, is significantly behind the development of other stretchable electronics. Several stretchable lithium-ion batteries and primary batteries have been fabricated, but their low capacities and complicated manufacturing processes are obstacles for practical applications. Herein, we report a stretchable zinc/manganese-oxide (Zn-MnO2) full battery based on a silver-nanowire- coated sponge prepared via a facile dip-coating process. The spongy electrode, with a three-dimensional (3D) binary network structure, provided not only high conductivity and stretchability, but also enabled a high mass loading of electrochemically active materials (Zn and MnO2 particles). The fabricated Zn-MnO2 battery exhibited an areal capacity as high as 3.6 mAh·cm^-2 and could accommodate tensile strains of up to 100% while retaining 89% of its original capacity. The facile solution-based strategy of dip-coating active materials onto a cheap sponge-based stretchable current collector opens up a new avenue for fabricating stretchable batteries.
基金by the National 973 Program(2005CB623607)the National Natural Science Foundation of China(20873071)Tianjin Basic&High-Tech Research(07ZCGHHZ00700 and 08JCZDJC21300).
文摘In this paper,we report on the morphology-controlled synthesis of magnesium micro/nanospheres and their electrochemical performance as the anode of primary Mg/MnO_(2) batteries.Mg micro/nanoscale materials with controllable shapes have been prepared via a conventional vapor-transport method under an inert atmosphere by adjusting the deposition temperatures.Extensive analysis techniques including SEM,XRD,TEM/HRTEM,and Brunauer Emmett Teller(BET)were carried out to characterize the as-obtained samples.The results show that the Mg samples are microspheres or micro/nanospheres with specific surface areas of 0.611.92 m^(2)/g.The electrochemical properties of the as-prepared Mg and commercial Mg powders were further studied in terms of their linear sweep voltammograms,impedance spectra,and discharge capability.By comparing the performance of different inhibitors in electrolytes,it was found that NaNO2(2.6 mol/L)as an inhibitor in the Mg(NO_(3))_(2)(2.6 mol/L)electrolyte affords a Mg electrode with high current density and low corrosion rate.In particular,the Mg sample consisting of microspheres with a diameter of 1.53.0μm and nanospheres with a diameter of 50150 nm exhibited superior electrode properties including negative initial potential(1.08 V),high current density(163 mA/cm^(2)),low apparent activation energy(5.1 kJ/mol),and high discharge specifi c capacity(784 mAh/g).The mixture of Mg nanospheres and microspheres is promising for application in primary Mg/MnO_(2) batteries because of the suffi cient contact with the electrolyte and greatly reduced charge transfer impedance and polarization.
文摘In this paper,a particular standard MicroGrid(MG)is accurately simulated in the presence of the Electric Vehicles(EVs)participating in decentralized primary frequency control service.It examines effect of number of the participating EVs on the short-term dynamic behaviour.The simulation results confirm that frequency deviation will not definitely become zero even though an unlimited number of the EVs participate.The output power of each EV is determined according to the frequency deviation.On the other hand,the output power of each EV affects the value of the frequency deviation,especially in small-scale MGs and MGs with predominant inductance behaviour.Eventually,an equilibrium point is reached after a new EV is added that depends on the characteristics of the MG and the functions executed in the MG central controller during such a service.Additionally,effect of Reflex method,an advanced charging technique for EVs,on the frequency deviation is examined.