Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of ...Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.展开更多
The microbiotic crust study is among new focuses in investigating on the desertification control. Based on determination of algal crusts with different successive ages (4-, 8-, 17-, 34-, 42-year-old) and unconsolidate...The microbiotic crust study is among new focuses in investigating on the desertification control. Based on determination of algal crusts with different successive ages (4-, 8-, 17-, 34-, 42-year-old) and unconsolidated sand in the desert area, species composition and clustering analyses were carried out in this study. Results on successional orientation revealed that (1) the abundance of Cyanophyta, specially of Scytonema javanicum gradually decreased; (2) the abundance of Chlorophyta, Bacillariophyta and a species of Cyanophyta, Phormidium tenue increased; (3) the biodiversity increased gradually with the community succession; and (4) biomass of microalgae increased at the early stage, but decreased at the later stage due to the abundance of lichens and mosses. But, the speed of natural succession was so slow that the community-building species was still the first dominant species after 42 years, except that its dominant degree decreased just slightly. However, successive speed and trend were affected by water, vegetation coverage, terrain, time and soil physico-chemical properties as well, especially Mn content in the soil appeared to have a threshold effect.展开更多
A novel polypeptide was isolated from mistletoe Viscum coloratum. The primary structure of the polypeptide named viscotoxin B2 was determined to be KSCCKNTTGRNIYNT CRFAGGSRERCAKLSGCKIISASTCPSDYPK by Edman degradation....A novel polypeptide was isolated from mistletoe Viscum coloratum. The primary structure of the polypeptide named viscotoxin B2 was determined to be KSCCKNTTGRNIYNT CRFAGGSRERCAKLSGCKIISASTCPSDYPK by Edman degradation. Viscotoxin B2 shared high sequence homology with viscotoxins isolated from Viscum album. Pharmacological experiments showed that viscotoxin B2 had distinct cytotoxic activity on tumor cells. Viscotoxin B2 could be used as a leading compound in cancer therapy.展开更多
The effect of rare earth(RE) oxide on impact toughness and primary structure of surfacing metal was investigated . The results show that the impact toughness of surfacing metal containing RE oxide can be increased by ...The effect of rare earth(RE) oxide on impact toughness and primary structure of surfacing metal was investigated . The results show that the impact toughness of surfacing metal containing RE oxide can be increased by 50 %. The primary structure can be refined and its shape changed from columnar crystals to equiaxed ones.展开更多
Mesoporous aluminosilicate with cubic ordered structure was synthesized by two-step crystallization, which showed stronger acid sites and more effective activity for catalytic alkylation of 2, 4-ditert-butylphenol wit...Mesoporous aluminosilicate with cubic ordered structure was synthesized by two-step crystallization, which showed stronger acid sites and more effective activity for catalytic alkylation of 2, 4-ditert-butylphenol with tert-butanol than conventional H-AlMCM-48 materials.展开更多
The solidification of primary austenite in hypocutcctic gray cast iron was studied by stepped grinding and quantitative metallography.The dendrite structure of primary austenite can be described by three models:typica...The solidification of primary austenite in hypocutcctic gray cast iron was studied by stepped grinding and quantitative metallography.The dendrite structure of primary austenite can be described by three models:typical dendrite crystal model,metamorphic dendrite crystal model and network dendrite crystal model.The dendrite crystals formed according to 3rd model is much more than those formed according to other models in this experiment.The primary austenites are connected each other,and the primary stems of austenite could be regarded as secondary arms and vice versa.展开更多
As the strict limitation of primary structure in traditional force method and displacement method in indeterminate analysis may lead to complicated high-order linear equations, a breakthrough of the limitation, i.e., ...As the strict limitation of primary structure in traditional force method and displacement method in indeterminate analysis may lead to complicated high-order linear equations, a breakthrough of the limitation, i.e., the application of irregular force method and irregular displacement method, would be introduced in this paper to ease the difficulty of hand computations. By using hyperstatic primary structures and partly chained primary structures, the primary structures of force method and displacement method are reformed, and the order of the system is decreased. The technique is explained through examples. The significance of the new method is summarized.展开更多
The allelic distribution of EcoRI and BamHI fragments of ras family genes between the human primary gastric cancer tissues and the corresponding adjacent normal tissues did not show any differences. Three genotypes of...The allelic distribution of EcoRI and BamHI fragments of ras family genes between the human primary gastric cancer tissues and the corresponding adjacent normal tissues did not show any differences. Three genotypes of BamHI restriction fragments length polymorphism of c-H-ras were revealed. No significant differences in the RFLPs were observed between normal individuals and gastric cancer patients. Four protooncogenes, c-H-ras, N-ras, c-myc and c-fos, were found to be transcriptionally active in the gastric cancer tissues in some cases examined. The comparison of the expression of these oncogenes between the malignant tissues and the corresponding normal tissues showed differential patterns. The expression of c-H-ras at cellular level was detected with in situ hybridization. The enhanced expression of c-H-ras in the gastric cancer cells was demonstrated, but the degree of the expession among the cancer cells was shown to be heterogeneous. In addition, the enhanced expression of c-H-ras was seen in the inflammatory cells.展开更多
The semisolid slurry of the A356 aluminum alloy was prepared by self-inoculation method(SIM),the effects of melt treatment temperatures and isothermal holding parameters on water-quenched microstructures of A356 alumi...The semisolid slurry of the A356 aluminum alloy was prepared by self-inoculation method(SIM),the effects of melt treatment temperatures and isothermal holding parameters on water-quenched microstructures of A356 aluminum alloy semisolid slurry were investigated,and the solidification behavior of the remaining liquid phase(secondary solidification)was analyzed.The results indicate that the melt treatment temperature has significant effects on the final semisolid microstructures.The semisolid slurry which is suitable for the rheological forming can be produced when the melt treatment temperature is between 680 and 690°C.During the isothermal holding process,the growth rate of the primary particles conforms to the dynamic equation of Dt 3-Do3=Kt,and the coarsening rate of the primary particles is the fastest when the isothermal holding temperature is 600°C.Additionally,the isothermal holding time also has obvious effect on the secondary solidification microstructures.The secondary particles are the smallest and roundest when the isothermal holding time is 3 min.The amount of the secondary particles gradually increases with the increase of isothermal holding temperature,and the eutectic reaction therefore is confined into small intergranular areas,contributing to the compactness of the final solidified eutectic structures.展开更多
Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semis...Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semisolid slurry of A356 aluminum alloy can be prepared by self-inoculation method at 600℃. Primary a-AI particles with fine and spherical morphologies are uniformly distributed when the isothermal holding time of slurry is 3 min. Liquid phase segregation occurs during rheo-diecasting process of semisolid slurry and the primary particles (α1) show obvious plastic deformation in the area of high stress and low cooling rate. A small amount of dendrites resulting from the relatively low temperature of the shot chamber at the initial stage of secondary solidification are fragmented as they pass through the in-gate during the mould filling process. The amount of dendrite fragments decreases with the increase of filling distance. During the solidification process of the remaining liquid, the nucleation rate of secondary particles (α2) increases with the increase of cooling rate, and the content of Si in secondary particles (α2) are larger than primary particles (α1). With the increase of cooling rate, the content of Si in secondary particles (α2) gradually increases. The morphologies of eutectic Si in different parts of die casting are noticeably different. The low cooling rate in the first filling positions leads to coarse eutectic structures, while the high cooling rate in the post filling positions promotes small and compact eutectic structures.展开更多
The production and trade of primary products had a growing impact on the economic security of all countries and regions,and the strategic position of these products in the global trade network was becoming increasingl...The production and trade of primary products had a growing impact on the economic security of all countries and regions,and the strategic position of these products in the global trade network was becoming increasingly prominent.Based on complex network theory,this paper explored the spatial pattern and complex structural evolution of the global primary product trade network(GPPTN)during 1985-2015 by using index methods,such as centrality,Sankey diagram,and structure entropy,focusing on the diversified spatial structure of China’s import and export markets for primary products(with exceptions of Taiwan of China,Hong Kong of China,and Macao of China due to a lack of data)and their geographical implications for China’s energy security.The research offered the following key findings.The GPPTN showed an obvious spatial heterogeneity pattern,and the area of import consumption was more concentrated;however,the overall trend was decentralized.The trade center of gravity shifted eastwards and reflected the rise of emerging markets.The overall flow of the GPPTN was from west to east and from south to north.In terms of the community detection of the GPPTN,North America,Europe,and Asia increasingly presented an unbalanced“tripartite confrontation”.China’s exports of primary products were mainly concentrated in the Association of Southeast Asian Nations(ASEAN)and other peripheral regions of Asia,and its imports undergone a major transformation,gradually expanding from the peripheral regions of Asia to Africa,the Middle East,Latin America,and other parts of the world.Energy fuels also became the largest imported primary products.Based on the changing trend of structural entropy and main market share,the analysis showed that the stable supply of China’s energy diversification was gradually realized.In particular,the cooperation dividend proposed by the Belt and Road initiative became an important turning point and a strong support for the expansion of China’s energy market diversification pattern and guarantee of energy security.展开更多
One of the major classes of antioxidant enzymes, which protect the cellular and subcellular components against harmful reactive oxygen species (ROS), is superoxide dismutase (SOD). SODs play pivotal role in scavenging...One of the major classes of antioxidant enzymes, which protect the cellular and subcellular components against harmful reactive oxygen species (ROS), is superoxide dismutase (SOD). SODs play pivotal role in scavenging highly reactive free oxygen radicals and protecting cells from toxic effects. In Oryza sativa three types of SODs are available based on their metal content viz. Cu-Zn SOD, Mn SOD and Fe SOD. In the present study attempts were made to critically assess the structure and phylogenetic relationship among Oryza sativa SODs. The sequence similarity search using local BLAST shows that Mn SODs and Fe SODs have greater degree of similarity compared with that of Cu-Zn SODs. The multiple alignment reveals that seven amino acids were found to be totally conserved. The secondary structure shows that Mn SODs and Fe SODs have similar helixes, sheets, turns and coils compared with that of Cu-Zn SODs. The comparative analysis also displayed greater resemblance in primary, secondary and tertiary structures of Fe SODs and Mn SODs. Comparison between the structure and sequence analysis reveals that Mn SOD and Fe SOD are found to be closely related whereas Cu-Zn SOD evolves independently.展开更多
Experimental study was carried out on the in-plane bending behavior of glass plates without lateral supports, and the effects of the factors, such as height-to-span ratio, on the stability of glass panels were studied...Experimental study was carried out on the in-plane bending behavior of glass plates without lateral supports, and the effects of the factors, such as height-to-span ratio, on the stability of glass panels were studied. Results show that the in-plane bending glass plates with both ends simply supported and their upper edge free lose overall stability under loads, which belongs to the limit-point type of instability. It is found that the buckling load increases linearly with the increase of height-to-span ratio of the glass plates. The lateral stress of in-plane bending glass plates without lateral supports increases linearly under loads; while the large-area stress increases nonlinearly and the lateral stress is not the controlling factor of instability. In finite element analysis, the first buckling mode is regarded as the initial imperfection and imposed on the model as 1/1000 of the span of the components. The numerical buckling load according to the theory of large deflection is less than the experiment result, which is more conservative and can provide some reference for design. For the design method, when the in-plane load is imposed on the glass plate, its lateral strength and the deflection should be verified. Considering the stability of the in-plane bending glass plate without reliable lateral support, buckling is another possible failure mode and calls for verification.展开更多
Cellular structures are regarded as excellent candidates for lightweight-design,load-bearing,and energy-absorbing applications.In this paper,a novel S-based TPMS hollow isotropic cellular structure is proposed with bo...Cellular structures are regarded as excellent candidates for lightweight-design,load-bearing,and energy-absorbing applications.In this paper,a novel S-based TPMS hollow isotropic cellular structure is proposed with both superior load-bearing and energy-absorbing performances.The hollow cellular structure is designed with Boolean operation based on the Fischer-Koch(S)implicit triply periodic minimal surfaces(TPMS)with different level parameters.The anisotropy and effective elasticity properties of cellular structures are evaluated with the numerical homogenization method.The finite element method is further conducted to analyze the static mechanical performance of hollow cellular structure considering the size effect.The compression experiments are finally carried out to reveal the compression properties and energy-absorption characteristics.Numerical results of the Zener ratio proved that the S-based hollow cellular structure tends to be isotropic,even better than the sheet-based Gyroid TPMS.Compared with the solid counterpart,the S-based hollow cellular structure has a higher elastic modulus,better load-bearing and energy absorption characteristics.展开更多
Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/...Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/char particles,and the results show that the fragmentation severity enhances with increasing porosity.Various porous thermal stress models were developed with finite element method,and the influences of the pore shape,size,position and porosity on the thermal stress were discussed.The maximum thermal stress inside particle increases with pore curvature,the pore position affects the thermal stress more significantly at the particle center and surface.The expectation of the maximum tensile thermal stress linearly increases with porosity,making the particles with higher porosity easier to fragment,contrary to the conclusion deduced from the devolatilization theory.The obtained results are valuable for the analysis of different thermal processes concerning the thermal stresses of the solid feedstocks.展开更多
AIM: To identify the novel mutation alleles in the CYP1B1 gene of primary congenital glaucoma(PCG) patients at Shandong Province of China, and investigate their correlation with glaucomatous features.METHODS: The DNA ...AIM: To identify the novel mutation alleles in the CYP1B1 gene of primary congenital glaucoma(PCG) patients at Shandong Province of China, and investigate their correlation with glaucomatous features.METHODS: The DNA from the peripheral blood of 13 congenital glaucoma patients and 50 ethnically matched healthy controls from the affiliated hospital of Qingdao University were extracted. The coding region of the CYP1B1 gene was amplified by PCR and direct DNA sequencing was performed. Disease causing-variants were analyzed by comparing the sequences and the structures of wild type and mutant CYP1B1 proteins by PyMOL software.RESULTS: Two missense mutations, including A330 F caused by c.988 G>T&c.989 C>T, and R390H caused by c.1169 G>A, were identified in one of the 13 PCG patients analyzed in our study. A330F mutation was observed to be novel in the Chinese Han population, which dramatically altered the protein structure of CYP1B1 gene, including the changes in the ligand-binding pocket. Furthermore, R390H mutation caused the changes in heme-protein binding site of this gene. In addition, the clinical phenotype displayed by PCG patient with these mutations was more pronounced than other PCG patients without these mutations. Multiple surgeries and combined drug treatment were not effective in reducing the elevated intraocular pressure in this patient.CONCLUSION: A novel A330F mutation is identified in the CYP1B1 gene of Chinese PCG patient. Moreover, in combination with other mutation R390H, this PCG patient shows significant difference in the CYP1B1 protein structure, which may specifically contribute to severe glaucomatous phenotype.展开更多
Output power and reliability are the most important characteristic parameters of semiconductor lasers.However,catas-trophic optical damage(COD),which usually occurs on the cavity surface,will seriously damage the furt...Output power and reliability are the most important characteristic parameters of semiconductor lasers.However,catas-trophic optical damage(COD),which usually occurs on the cavity surface,will seriously damage the further improvement of the output power and affect the reliability.To improve the anti-optical disaster ability of the cavity surface,a non-absorption window(NAW)is adopted for the 915 nm InGaAsP/GaAsP single-quantum well semiconductor laser using quantum well mix-ing(QWI)induced by impurity-free vacancy.Both the principle and the process of point defect diffusion are described in detail in this paper.We also studied the effects of annealing temperature,annealing time,and the thickness of SiO_(2) film on the quan-tum well mixing in a semiconductor laser with a primary epitaxial structure,which is distinct from the previous structures.We found that when compared with the complete epitaxial structure,the blue shift of the semiconductor laser with the primary epi-taxial structure is larger under the same conditions.To obtain the appropriate blue shift window,the primary epitaxial struc-ture can use a lower annealing temperature and shorter annealing time.In addition,the process is less expensive.We also pro-vide references for upcoming device fabrication.展开更多
Objective To investigate the development and characterizations of the hepatocytes isolated from fetal ovine and to determine the effect of hypoxia on their growth and metabolism.Methods Fresh hepatocytes were isolated...Objective To investigate the development and characterizations of the hepatocytes isolated from fetal ovine and to determine the effect of hypoxia on their growth and metabolism.Methods Fresh hepatocytes were isolated from the liver of fetal ovine at late gestation, cultured in specific media, and exposed to normoxia(21% O2) or hypoxia(2% O2).The cellular characteristics and population purity were identified by immunocytochemistry and flow cytometry(FCM).The effects of hypoxia on cell cycle and apoptosis of the hepatocytes were evaluated by FCM, whereas the cellular ultrastructure changes were examined with a transmission electron microscope.Results The cell purity of hepatocytes was over 95%.Under hypoxia exposure, the hepatocytes showed a gradual increase in proportion at the S phase and in proliferative index, followed with a compatible increase in apoptosis and progressively decreased cell viability.Additionally, the organelles of the hepatocytes demonstrated dramatic changes, including swelling of mitochondria, disorder in cristae arrangement, expansion of endoplasmic reticulum, and a large number of circular lipid droplets emerging in the cytoplasm.Conclusion Fetal ovine hepatocytes could be primarily cultured in a short-term culture system with a high purity of over 95% and with their preserved original characteristics.Hypoxia could induce changes in ultrastructural and inhibit the proliferation of cultured fetal ovine hepatocytes through apoptotic mechanisms.展开更多
With high water content,excellent biocompatibility and lubricating properties,and a microstructure similar to that of the extracellular matrix,hydrogel is becoming one of the most promising materials as a substitute f...With high water content,excellent biocompatibility and lubricating properties,and a microstructure similar to that of the extracellular matrix,hydrogel is becoming one of the most promising materials as a substitute for articular cartilage.However,it is a challenge for hydrogel materials to simultaneously satisfy high loading and low friction.Most hydrogels are brittle,with fracture energies of around 10 J·m^(-2),as compared with∼1000 J·m^(-2) for cartilage.A great deal of effort has been devoted to the synthesis of hydrogels with improved mechanical properties,such as increasing the compactness of the polymer network,introducing dynamic non-covalent bonds,and increasing the hydrophobicity of the polymer,all at the expense of the lubricating properties of the hydrogel.Herein,we develop a hydrogel material with anisotropic tubular structures where the compactness gradually decreases and eventually disappears from the surface to the subsurface,achieving a balance between lubrication and load-bearing.The porous layer with hydrophilic carboxyl groups on the surface exhibits extremely low friction(coefficient of friction(COF)∼0.003,1 N;COF∼0.08,20 N)against the hard steel ball,while the bottom layer acts as an excellent load-bearing function.What is more,the gradual transition of the tubular structures between the surface and the subsurface ensures the uniform distribution of friction stress between a lubricating and bearing layers,which endows the material with long-lasting and smooth friction properties.The extraordinary lubricious performance of the hydrogels with anisotropic tubular structure has potential applications in tissue engineering and medical devices.展开更多
Objective To explore the current situation and problems of the pharmacy organization and pharmaceutical services in primary medical and health institutions so as to provide a reference for improving relevant policies....Objective To explore the current situation and problems of the pharmacy organization and pharmaceutical services in primary medical and health institutions so as to provide a reference for improving relevant policies.Methods Multi-stage stratified random sampling was used to collect questionnaires from primary medical and health institutions in 5 provinces,and 102 questionnaires were distributed.Then Excel 2016 and IBM SPSS 21.0 software were applied for descriptive statistical analysis,chi-square test and multiple response analysis.Results and Conclusion A total of 92 primary medical and health institutions participated in the survey,and 92 valid questionnaires were recovered.The survey shows that 54.1%of the institutions have established more than 8 pharmaceutical administration regulations.63.5%and 31.8%of the institutions have formulated pharmaceutical administration and pharmacotherapy team charters(or management systems).29.7%of institutions have pharmacy personnel in accordance with relevant regulations.The higher proportion of pharmacy services are prescription review and adjustment,medication guidance,collecting and reporting adverse reactions,medication errors and medication hazard information.Primary medical and health institutions still need to further improve their pharmaceutical administration system,organizational structure,pharmacy professional training and clinical pharmacy service.展开更多
基金funded by the Czech University of Life Sciences Prague(Internal Grant Agency:A_03_22-43110/1312/3101)the Czech Science(GACR 21-27454S)。
文摘Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.
文摘The microbiotic crust study is among new focuses in investigating on the desertification control. Based on determination of algal crusts with different successive ages (4-, 8-, 17-, 34-, 42-year-old) and unconsolidated sand in the desert area, species composition and clustering analyses were carried out in this study. Results on successional orientation revealed that (1) the abundance of Cyanophyta, specially of Scytonema javanicum gradually decreased; (2) the abundance of Chlorophyta, Bacillariophyta and a species of Cyanophyta, Phormidium tenue increased; (3) the biodiversity increased gradually with the community succession; and (4) biomass of microalgae increased at the early stage, but decreased at the later stage due to the abundance of lichens and mosses. But, the speed of natural succession was so slow that the community-building species was still the first dominant species after 42 years, except that its dominant degree decreased just slightly. However, successive speed and trend were affected by water, vegetation coverage, terrain, time and soil physico-chemical properties as well, especially Mn content in the soil appeared to have a threshold effect.
文摘A novel polypeptide was isolated from mistletoe Viscum coloratum. The primary structure of the polypeptide named viscotoxin B2 was determined to be KSCCKNTTGRNIYNT CRFAGGSRERCAKLSGCKIISASTCPSDYPK by Edman degradation. Viscotoxin B2 shared high sequence homology with viscotoxins isolated from Viscum album. Pharmacological experiments showed that viscotoxin B2 had distinct cytotoxic activity on tumor cells. Viscotoxin B2 could be used as a leading compound in cancer therapy.
文摘The effect of rare earth(RE) oxide on impact toughness and primary structure of surfacing metal was investigated . The results show that the impact toughness of surfacing metal containing RE oxide can be increased by 50 %. The primary structure can be refined and its shape changed from columnar crystals to equiaxed ones.
基金We thank financial support by the National Natural Science Foundation of China(grant 29973001).
文摘Mesoporous aluminosilicate with cubic ordered structure was synthesized by two-step crystallization, which showed stronger acid sites and more effective activity for catalytic alkylation of 2, 4-ditert-butylphenol with tert-butanol than conventional H-AlMCM-48 materials.
文摘The solidification of primary austenite in hypocutcctic gray cast iron was studied by stepped grinding and quantitative metallography.The dendrite structure of primary austenite can be described by three models:typical dendrite crystal model,metamorphic dendrite crystal model and network dendrite crystal model.The dendrite crystals formed according to 3rd model is much more than those formed according to other models in this experiment.The primary austenites are connected each other,and the primary stems of austenite could be regarded as secondary arms and vice versa.
文摘As the strict limitation of primary structure in traditional force method and displacement method in indeterminate analysis may lead to complicated high-order linear equations, a breakthrough of the limitation, i.e., the application of irregular force method and irregular displacement method, would be introduced in this paper to ease the difficulty of hand computations. By using hyperstatic primary structures and partly chained primary structures, the primary structures of force method and displacement method are reformed, and the order of the system is decreased. The technique is explained through examples. The significance of the new method is summarized.
文摘The allelic distribution of EcoRI and BamHI fragments of ras family genes between the human primary gastric cancer tissues and the corresponding adjacent normal tissues did not show any differences. Three genotypes of BamHI restriction fragments length polymorphism of c-H-ras were revealed. No significant differences in the RFLPs were observed between normal individuals and gastric cancer patients. Four protooncogenes, c-H-ras, N-ras, c-myc and c-fos, were found to be transcriptionally active in the gastric cancer tissues in some cases examined. The comparison of the expression of these oncogenes between the malignant tissues and the corresponding normal tissues showed differential patterns. The expression of c-H-ras at cellular level was detected with in situ hybridization. The enhanced expression of c-H-ras in the gastric cancer cells was demonstrated, but the degree of the expession among the cancer cells was shown to be heterogeneous. In addition, the enhanced expression of c-H-ras was seen in the inflammatory cells.
基金Project(51464031)supported by the National Natural Science Foundation of China
文摘The semisolid slurry of the A356 aluminum alloy was prepared by self-inoculation method(SIM),the effects of melt treatment temperatures and isothermal holding parameters on water-quenched microstructures of A356 aluminum alloy semisolid slurry were investigated,and the solidification behavior of the remaining liquid phase(secondary solidification)was analyzed.The results indicate that the melt treatment temperature has significant effects on the final semisolid microstructures.The semisolid slurry which is suitable for the rheological forming can be produced when the melt treatment temperature is between 680 and 690°C.During the isothermal holding process,the growth rate of the primary particles conforms to the dynamic equation of Dt 3-Do3=Kt,and the coarsening rate of the primary particles is the fastest when the isothermal holding temperature is 600°C.Additionally,the isothermal holding time also has obvious effect on the secondary solidification microstructures.The secondary particles are the smallest and roundest when the isothermal holding time is 3 min.The amount of the secondary particles gradually increases with the increase of isothermal holding temperature,and the eutectic reaction therefore is confined into small intergranular areas,contributing to the compactness of the final solidified eutectic structures.
基金financially supported by the National Natural Science Foundation of China(No.51464031)
文摘Semisolid slurry of A356 aluminum alloy was prepared by self-inoculation method, and the microstructure and solidification behavior during rheo-diecasting process were investigated. The results indicate that the semisolid slurry of A356 aluminum alloy can be prepared by self-inoculation method at 600℃. Primary a-AI particles with fine and spherical morphologies are uniformly distributed when the isothermal holding time of slurry is 3 min. Liquid phase segregation occurs during rheo-diecasting process of semisolid slurry and the primary particles (α1) show obvious plastic deformation in the area of high stress and low cooling rate. A small amount of dendrites resulting from the relatively low temperature of the shot chamber at the initial stage of secondary solidification are fragmented as they pass through the in-gate during the mould filling process. The amount of dendrite fragments decreases with the increase of filling distance. During the solidification process of the remaining liquid, the nucleation rate of secondary particles (α2) increases with the increase of cooling rate, and the content of Si in secondary particles (α2) are larger than primary particles (α1). With the increase of cooling rate, the content of Si in secondary particles (α2) gradually increases. The morphologies of eutectic Si in different parts of die casting are noticeably different. The low cooling rate in the first filling positions leads to coarse eutectic structures, while the high cooling rate in the post filling positions promotes small and compact eutectic structures.
基金financially supported by the MOE (Ministry of Education in China) Project of Humanities and Social Sciences, China (20YJCZH057)the Hubei Province Social Science Fund General Project, China (2021147)the Xiangyang City Science and Technology Planning Project, Hubei Province, China (2021rkx04)
文摘The production and trade of primary products had a growing impact on the economic security of all countries and regions,and the strategic position of these products in the global trade network was becoming increasingly prominent.Based on complex network theory,this paper explored the spatial pattern and complex structural evolution of the global primary product trade network(GPPTN)during 1985-2015 by using index methods,such as centrality,Sankey diagram,and structure entropy,focusing on the diversified spatial structure of China’s import and export markets for primary products(with exceptions of Taiwan of China,Hong Kong of China,and Macao of China due to a lack of data)and their geographical implications for China’s energy security.The research offered the following key findings.The GPPTN showed an obvious spatial heterogeneity pattern,and the area of import consumption was more concentrated;however,the overall trend was decentralized.The trade center of gravity shifted eastwards and reflected the rise of emerging markets.The overall flow of the GPPTN was from west to east and from south to north.In terms of the community detection of the GPPTN,North America,Europe,and Asia increasingly presented an unbalanced“tripartite confrontation”.China’s exports of primary products were mainly concentrated in the Association of Southeast Asian Nations(ASEAN)and other peripheral regions of Asia,and its imports undergone a major transformation,gradually expanding from the peripheral regions of Asia to Africa,the Middle East,Latin America,and other parts of the world.Energy fuels also became the largest imported primary products.Based on the changing trend of structural entropy and main market share,the analysis showed that the stable supply of China’s energy diversification was gradually realized.In particular,the cooperation dividend proposed by the Belt and Road initiative became an important turning point and a strong support for the expansion of China’s energy market diversification pattern and guarantee of energy security.
文摘One of the major classes of antioxidant enzymes, which protect the cellular and subcellular components against harmful reactive oxygen species (ROS), is superoxide dismutase (SOD). SODs play pivotal role in scavenging highly reactive free oxygen radicals and protecting cells from toxic effects. In Oryza sativa three types of SODs are available based on their metal content viz. Cu-Zn SOD, Mn SOD and Fe SOD. In the present study attempts were made to critically assess the structure and phylogenetic relationship among Oryza sativa SODs. The sequence similarity search using local BLAST shows that Mn SODs and Fe SODs have greater degree of similarity compared with that of Cu-Zn SODs. The multiple alignment reveals that seven amino acids were found to be totally conserved. The secondary structure shows that Mn SODs and Fe SODs have similar helixes, sheets, turns and coils compared with that of Cu-Zn SODs. The comparative analysis also displayed greater resemblance in primary, secondary and tertiary structures of Fe SODs and Mn SODs. Comparison between the structure and sequence analysis reveals that Mn SOD and Fe SOD are found to be closely related whereas Cu-Zn SOD evolves independently.
文摘Experimental study was carried out on the in-plane bending behavior of glass plates without lateral supports, and the effects of the factors, such as height-to-span ratio, on the stability of glass panels were studied. Results show that the in-plane bending glass plates with both ends simply supported and their upper edge free lose overall stability under loads, which belongs to the limit-point type of instability. It is found that the buckling load increases linearly with the increase of height-to-span ratio of the glass plates. The lateral stress of in-plane bending glass plates without lateral supports increases linearly under loads; while the large-area stress increases nonlinearly and the lateral stress is not the controlling factor of instability. In finite element analysis, the first buckling mode is regarded as the initial imperfection and imposed on the model as 1/1000 of the span of the components. The numerical buckling load according to the theory of large deflection is less than the experiment result, which is more conservative and can provide some reference for design. For the design method, when the in-plane load is imposed on the glass plate, its lateral strength and the deflection should be verified. Considering the stability of the in-plane bending glass plate without reliable lateral support, buckling is another possible failure mode and calls for verification.
基金This research was funded by the National Natural Science Foundation of China(NSFC,Project No.51775308)National Natural Science Foundation of Hubei(No.2021CFB236)+1 种基金Youth Talent Project of Hubei Provincial Department of Education(No.Q20201205)Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance Open Foundation(No.2020KJX04).The authors would like to thank for these financial supports.
文摘Cellular structures are regarded as excellent candidates for lightweight-design,load-bearing,and energy-absorbing applications.In this paper,a novel S-based TPMS hollow isotropic cellular structure is proposed with both superior load-bearing and energy-absorbing performances.The hollow cellular structure is designed with Boolean operation based on the Fischer-Koch(S)implicit triply periodic minimal surfaces(TPMS)with different level parameters.The anisotropy and effective elasticity properties of cellular structures are evaluated with the numerical homogenization method.The finite element method is further conducted to analyze the static mechanical performance of hollow cellular structure considering the size effect.The compression experiments are finally carried out to reveal the compression properties and energy-absorption characteristics.Numerical results of the Zener ratio proved that the S-based hollow cellular structure tends to be isotropic,even better than the sheet-based Gyroid TPMS.Compared with the solid counterpart,the S-based hollow cellular structure has a higher elastic modulus,better load-bearing and energy absorption characteristics.
基金supported by National Natural Science Foundation of China(grant No.21908150)China Postdoctoral Science Foundation(grant No.2019M653404)+1 种基金the Key Research&Development Program of Sichuan Province,China(grant No.22zDYF 1839)Sichuan University Post-Doctoral Interdisciplinary Innovation Initial Funding.
文摘Thermal stress is an important reason of coal particle primary fragmentation,during which the role of pore structure is ambiguous.Thermal stress induced fragmentation experiments were conducted with low volatile coal/char particles,and the results show that the fragmentation severity enhances with increasing porosity.Various porous thermal stress models were developed with finite element method,and the influences of the pore shape,size,position and porosity on the thermal stress were discussed.The maximum thermal stress inside particle increases with pore curvature,the pore position affects the thermal stress more significantly at the particle center and surface.The expectation of the maximum tensile thermal stress linearly increases with porosity,making the particles with higher porosity easier to fragment,contrary to the conclusion deduced from the devolatilization theory.The obtained results are valuable for the analysis of different thermal processes concerning the thermal stresses of the solid feedstocks.
基金Supported by “Clinical medical+X” Project from Department of Medicine of Qingdao University
文摘AIM: To identify the novel mutation alleles in the CYP1B1 gene of primary congenital glaucoma(PCG) patients at Shandong Province of China, and investigate their correlation with glaucomatous features.METHODS: The DNA from the peripheral blood of 13 congenital glaucoma patients and 50 ethnically matched healthy controls from the affiliated hospital of Qingdao University were extracted. The coding region of the CYP1B1 gene was amplified by PCR and direct DNA sequencing was performed. Disease causing-variants were analyzed by comparing the sequences and the structures of wild type and mutant CYP1B1 proteins by PyMOL software.RESULTS: Two missense mutations, including A330 F caused by c.988 G>T&c.989 C>T, and R390H caused by c.1169 G>A, were identified in one of the 13 PCG patients analyzed in our study. A330F mutation was observed to be novel in the Chinese Han population, which dramatically altered the protein structure of CYP1B1 gene, including the changes in the ligand-binding pocket. Furthermore, R390H mutation caused the changes in heme-protein binding site of this gene. In addition, the clinical phenotype displayed by PCG patient with these mutations was more pronounced than other PCG patients without these mutations. Multiple surgeries and combined drug treatment were not effective in reducing the elevated intraocular pressure in this patient.CONCLUSION: A novel A330F mutation is identified in the CYP1B1 gene of Chinese PCG patient. Moreover, in combination with other mutation R390H, this PCG patient shows significant difference in the CYP1B1 protein structure, which may specifically contribute to severe glaucomatous phenotype.
基金This work was supported by the National Natural Science Foundation of China(NNSFC)(Grant No.62174154).
文摘Output power and reliability are the most important characteristic parameters of semiconductor lasers.However,catas-trophic optical damage(COD),which usually occurs on the cavity surface,will seriously damage the further improvement of the output power and affect the reliability.To improve the anti-optical disaster ability of the cavity surface,a non-absorption window(NAW)is adopted for the 915 nm InGaAsP/GaAsP single-quantum well semiconductor laser using quantum well mix-ing(QWI)induced by impurity-free vacancy.Both the principle and the process of point defect diffusion are described in detail in this paper.We also studied the effects of annealing temperature,annealing time,and the thickness of SiO_(2) film on the quan-tum well mixing in a semiconductor laser with a primary epitaxial structure,which is distinct from the previous structures.We found that when compared with the complete epitaxial structure,the blue shift of the semiconductor laser with the primary epi-taxial structure is larger under the same conditions.To obtain the appropriate blue shift window,the primary epitaxial struc-ture can use a lower annealing temperature and shorter annealing time.In addition,the process is less expensive.We also pro-vide references for upcoming device fabrication.
基金funded by National Natural Science Foundation [81370719 and 81671535]Jiangsu Science Foundation [BE2015642]+3 种基金Jiangsu Key Discipline of Human Assisted Reproduction Medicine Foundation [FXK201749]Jiangsu Provincial Medical Talent of the Project of Invigorating Healthcare through Science,Technology and Education [ZDRCA2016044]and Chinese Medical Association Clinical Medicine Research Reproductive Medicine [17020270696]The Priority Academic Program Development of the Jiangsu Higher Education Institutes(PAPD)
文摘Objective To investigate the development and characterizations of the hepatocytes isolated from fetal ovine and to determine the effect of hypoxia on their growth and metabolism.Methods Fresh hepatocytes were isolated from the liver of fetal ovine at late gestation, cultured in specific media, and exposed to normoxia(21% O2) or hypoxia(2% O2).The cellular characteristics and population purity were identified by immunocytochemistry and flow cytometry(FCM).The effects of hypoxia on cell cycle and apoptosis of the hepatocytes were evaluated by FCM, whereas the cellular ultrastructure changes were examined with a transmission electron microscope.Results The cell purity of hepatocytes was over 95%.Under hypoxia exposure, the hepatocytes showed a gradual increase in proportion at the S phase and in proliferative index, followed with a compatible increase in apoptosis and progressively decreased cell viability.Additionally, the organelles of the hepatocytes demonstrated dramatic changes, including swelling of mitochondria, disorder in cristae arrangement, expansion of endoplasmic reticulum, and a large number of circular lipid droplets emerging in the cytoplasm.Conclusion Fetal ovine hepatocytes could be primarily cultured in a short-term culture system with a high purity of over 95% and with their preserved original characteristics.Hypoxia could induce changes in ultrastructural and inhibit the proliferation of cultured fetal ovine hepatocytes through apoptotic mechanisms.
基金This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB 0470000)the National Natural Science Foundation of China(22032006,22072169 and 22102201)+3 种基金the National Key Research and Development Program of China(2021YFA0716304)the Key Research Project of Shandong Provincial Natural Science Foundation(ZR2021ZD27)the Gansu Province Basic Research Innovation Group Project(22JR5RA093)the Special Research Assistant Project of the Chinese Academy of Sciences。
文摘With high water content,excellent biocompatibility and lubricating properties,and a microstructure similar to that of the extracellular matrix,hydrogel is becoming one of the most promising materials as a substitute for articular cartilage.However,it is a challenge for hydrogel materials to simultaneously satisfy high loading and low friction.Most hydrogels are brittle,with fracture energies of around 10 J·m^(-2),as compared with∼1000 J·m^(-2) for cartilage.A great deal of effort has been devoted to the synthesis of hydrogels with improved mechanical properties,such as increasing the compactness of the polymer network,introducing dynamic non-covalent bonds,and increasing the hydrophobicity of the polymer,all at the expense of the lubricating properties of the hydrogel.Herein,we develop a hydrogel material with anisotropic tubular structures where the compactness gradually decreases and eventually disappears from the surface to the subsurface,achieving a balance between lubrication and load-bearing.The porous layer with hydrophilic carboxyl groups on the surface exhibits extremely low friction(coefficient of friction(COF)∼0.003,1 N;COF∼0.08,20 N)against the hard steel ball,while the bottom layer acts as an excellent load-bearing function.What is more,the gradual transition of the tubular structures between the surface and the subsurface ensures the uniform distribution of friction stress between a lubricating and bearing layers,which endows the material with long-lasting and smooth friction properties.The extraordinary lubricious performance of the hydrogels with anisotropic tubular structure has potential applications in tissue engineering and medical devices.
文摘Objective To explore the current situation and problems of the pharmacy organization and pharmaceutical services in primary medical and health institutions so as to provide a reference for improving relevant policies.Methods Multi-stage stratified random sampling was used to collect questionnaires from primary medical and health institutions in 5 provinces,and 102 questionnaires were distributed.Then Excel 2016 and IBM SPSS 21.0 software were applied for descriptive statistical analysis,chi-square test and multiple response analysis.Results and Conclusion A total of 92 primary medical and health institutions participated in the survey,and 92 valid questionnaires were recovered.The survey shows that 54.1%of the institutions have established more than 8 pharmaceutical administration regulations.63.5%and 31.8%of the institutions have formulated pharmaceutical administration and pharmacotherapy team charters(or management systems).29.7%of institutions have pharmacy personnel in accordance with relevant regulations.The higher proportion of pharmacy services are prescription review and adjustment,medication guidance,collecting and reporting adverse reactions,medication errors and medication hazard information.Primary medical and health institutions still need to further improve their pharmaceutical administration system,organizational structure,pharmacy professional training and clinical pharmacy service.