期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Research on fractal characteristics of primary phase morphology in semi-solid A356 alloy 被引量:4
1
作者 Zheng LIU Xiaomei LIU +1 位作者 Chunhui HU Weimin MAO 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第6期421-428,共8页
Semi-solid slurry of A356 alloy was prepared by low superheat pouring and slightly electromagnetic stirring, and the fractal characteristics of morphology in semi-solid primary phase was researched. The fractal dimens... Semi-solid slurry of A356 alloy was prepared by low superheat pouring and slightly electromagnetic stirring, and the fractal characteristics of morphology in semi-solid primary phase was researched. The fractal dimensions of primary phase morphology in the semi-solid A356 alloy were calculated by the program written to calculate the fractal dimensions of box-counting in the image of solid phase morphology in semi-solid metal slurry. The results indicated that the morphology of primary phase in semi-solid A356 prepared by low superheat pouring and slightly electromagnetic stirring is characterized by fractal dimension, and the primary phase morphology obtained by the different processing parameters has different fractal dimensions. The morphology of primary phase at the different position of ingot has different fractal dimensions, which reflected the effect of solidified conditions at different positions in the same ingot on the morphology of semi-solid primary phase. Solidification of semi-solid alloy is a course of change in fractal dimension. 展开更多
关键词 SEMI-SOLID morphology of primary phase FRACTAL A356 alloy
下载PDF
Phase Morphology Evolution in AISI301 Austenite Stainless Steel under Different Cooling Rates
2
作者 白亮 麻永林 +2 位作者 XING Shuqing LIU Chenxin ZHANG Jieyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期392-396,共5页
Quenching experiments were performed at different cooling rates under non-directional solidification by differential thermal analysis, and the morphologic variation of primary phase, phase transition temperature and h... Quenching experiments were performed at different cooling rates under non-directional solidification by differential thermal analysis, and the morphologic variation of primary phase, phase transition temperature and hardness change at the same quenching temperature were investigated. The experimental results show that, with the gradual decrease of the cooling rate from 25 K/min, the morphology of ferrite starts to transform experiencing the dendrite, radial pattern, Widmanstatten-like and wire-net. Sample starts to present the Widmanstatten-like microstructure at 10 K/min which does not exist at higher or lower cooling rates, and this microstructure is detrimental to the mechanical property. Except 10 K/min, the hardness decreases with decreasing cooling rate. 展开更多
关键词 cooling rate non-directional solidification morphology evolution primary phase
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部