Let α be a nonzero endomorphism of a ring R, n be a positive integer and T_n(R, α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by T_n(R, α)....Let α be a nonzero endomorphism of a ring R, n be a positive integer and T_n(R, α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by T_n(R, α). Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring R[x; α]/(x^n), where R[x; α] is the skew polynomial ring.展开更多
文摘Let α be a nonzero endomorphism of a ring R, n be a positive integer and T_n(R, α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by T_n(R, α). Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring R[x; α]/(x^n), where R[x; α] is the skew polynomial ring.