Consider the sequence of algebraic integers un given by the starting values u0=0,u1=1 and the recurrence u_(n+1)=(4cos^2(2π/7)-1)u_n-u_(n-1).We prove that for any n ■{1,2,3,5,8,12,18,28,30}the n-th term of the seque...Consider the sequence of algebraic integers un given by the starting values u0=0,u1=1 and the recurrence u_(n+1)=(4cos^2(2π/7)-1)u_n-u_(n-1).We prove that for any n ■{1,2,3,5,8,12,18,28,30}the n-th term of the sequence has a primitive divisor in Z[2 cos(2π/7)].As a consequence we deduce that for any sufficiently large n there exists a prime power q such that the groupcan be generated by a pair x,y with χ~2=y^3=(xy)~7=1 and the order of the commutator[x,y]is exactly n.The latter result answers in affirmative a question of Holt and Plesken.展开更多
Let A∈N,B∈Z with gcd(A,B)=1,B{-1,0,1}. For the binary recurrence (Lucas sequence) of the form u 0=0, u 1=1, u n+2 =Au n+1 +Bu n, let N 1(A,B,k) be the number of the terms n of |u n|=k, where k∈N. In this paper, usi...Let A∈N,B∈Z with gcd(A,B)=1,B{-1,0,1}. For the binary recurrence (Lucas sequence) of the form u 0=0, u 1=1, u n+2 =Au n+1 +Bu n, let N 1(A,B,k) be the number of the terms n of |u n|=k, where k∈N. In this paper, using a new result of Bilu, Hanrot and Voutier on primitive divisors, we proved that N 1(A,B,k)≤1 except N 1(1,-2,1)=5[n=1,2,3,5,13], N 1(1,-3,1)=3, N 1(1,-5,1)=3,N 1(1,B,1)=2(B{-2,-3,-5}), N 1(12,-55,1)=2, N 1(12,-377,1)=2, N 1(A,B,1)=2(A 2+B=±1, A>1), N 1(1,-2,3)=2, N 1(A,B,A)=2(A 2+2B=±1,A>1. For Lehmer sequence, we got a similar result. In addition, we also obtained some applications of the above results to some Diophantime equations.展开更多
In this paper, we classify the m-ovoids of finite classical polar spaces that admit a transitive automorphism group acting irreducibly on the ambient vector space. In particular, we obtain several new infinite familie...In this paper, we classify the m-ovoids of finite classical polar spaces that admit a transitive automorphism group acting irreducibly on the ambient vector space. In particular, we obtain several new infinite families of transitive m-ovoids.展开更多
We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic Diophantine equations to solve completely the exponential Diophantine equation x^2+(3...We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic Diophantine equations to solve completely the exponential Diophantine equation x^2+(3a^2-1)^m = (4a^2-1)^n when 3a^2-1 is a prime or a prime power.展开更多
基金supported by the Government of the Russian Federation (Grant No. 14.Z50.31.0030)
文摘Consider the sequence of algebraic integers un given by the starting values u0=0,u1=1 and the recurrence u_(n+1)=(4cos^2(2π/7)-1)u_n-u_(n-1).We prove that for any n ■{1,2,3,5,8,12,18,28,30}the n-th term of the sequence has a primitive divisor in Z[2 cos(2π/7)].As a consequence we deduce that for any sufficiently large n there exists a prime power q such that the groupcan be generated by a pair x,y with χ~2=y^3=(xy)~7=1 and the order of the commutator[x,y]is exactly n.The latter result answers in affirmative a question of Holt and Plesken.
文摘Let A∈N,B∈Z with gcd(A,B)=1,B{-1,0,1}. For the binary recurrence (Lucas sequence) of the form u 0=0, u 1=1, u n+2 =Au n+1 +Bu n, let N 1(A,B,k) be the number of the terms n of |u n|=k, where k∈N. In this paper, using a new result of Bilu, Hanrot and Voutier on primitive divisors, we proved that N 1(A,B,k)≤1 except N 1(1,-2,1)=5[n=1,2,3,5,13], N 1(1,-3,1)=3, N 1(1,-5,1)=3,N 1(1,B,1)=2(B{-2,-3,-5}), N 1(12,-55,1)=2, N 1(12,-377,1)=2, N 1(A,B,1)=2(A 2+B=±1, A>1), N 1(1,-2,3)=2, N 1(A,B,A)=2(A 2+2B=±1,A>1. For Lehmer sequence, we got a similar result. In addition, we also obtained some applications of the above results to some Diophantime equations.
基金supported by National Natural Science Foundation of China (Grant No. 12171428)the Sino-German Mobility Programme M-0157Shandong Provincial Natural Science Foundation (Grant No. ZR2022QA069)。
文摘In this paper, we classify the m-ovoids of finite classical polar spaces that admit a transitive automorphism group acting irreducibly on the ambient vector space. In particular, we obtain several new infinite families of transitive m-ovoids.
基金the Natural Science Foundation of Guangdong Province (04009801)the Important Science Research Foundation of Foshan University.
文摘We apply a new, deep theorem of Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic Diophantine equations to solve completely the exponential Diophantine equation x^2+(3a^2-1)^m = (4a^2-1)^n when 3a^2-1 is a prime or a prime power.