In this paper, we mainly study the orbital graphs of primitive groups with the socle A<sub>7</sub> x A<sub>7 </sub>which acts by diagonal action. Firstly, we calculate the element conjugat...In this paper, we mainly study the orbital graphs of primitive groups with the socle A<sub>7</sub> x A<sub>7 </sub>which acts by diagonal action. Firstly, we calculate the element conjugate classes of A7</sub>, then we discuss the stabilizer of two points in A7</sub>. Finally, according to the relation between suborbit and orbital, we obtain the orbitals, and determine the orbital graphs.展开更多
Let Γ be a connected regular bipartite graph of order 18 p, where p is a prime. Assume that Γ admits a group acting primitively on one of the bipartition subsets of Γ. Then, in this paper, it is shown that eitherΓ...Let Γ be a connected regular bipartite graph of order 18 p, where p is a prime. Assume that Γ admits a group acting primitively on one of the bipartition subsets of Γ. Then, in this paper, it is shown that eitherΓ is arc-transitive, or Γ is isomorphic to one of 17 semisymmetric graphs which are constructed from primitive groups of degree 9p.展开更多
Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Sch...Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Schinzel.By bounding the degrees,but expanding the maps and variables in Davenport's Problem,Galois stratification enhanced the separated variable theme,solving an Ax and Kochen problem from their Artin Conjecture work.Denef and Loeser applied this to add Chow motive coefficients to previously introduced zeta functions on a diophantine statement.By restricting the variables,but leaving the degrees unbounded,we found the striking distinction between Davenport's problem over Q,solved by applying the Branch Cycle Lemma,and its generalization over any number field,solved by using the simple group classification.This encouraged Thompson to formulate the genus 0 problem on rational function monodromy groups.Guralnick and Thompson led its solution in stages.We look at two developments since the solution of Davenport's problem.Stemming from MacCluer's 1967 thesis,identifying a general class of problems,including Davenport's,as monodromy precise.R(iemann)E(xistence)T(heorem)'s role as a converse to problems generalizing Davenport's,and Schinzel's (on reducibility).We use these to consider:Going beyond the simple group classification to handle imprimitive groups,and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.展开更多
Some classical results about linear representations of a finite group G have been also proved for representations of G on non-abelian groups (G-groups). In this paper we establish a decomposition theorem for irreduc...Some classical results about linear representations of a finite group G have been also proved for representations of G on non-abelian groups (G-groups). In this paper we establish a decomposition theorem for irreducible G-groups which expresses a suitable irreducible G-group as a tensor product of two projective G-groups in a similar way to the celebrated theorem of Clifford for linear representations. Moreover, we study the non-abelian minimal normal subgroups of G in which this decomposition is possible.展开更多
文摘In this paper, we mainly study the orbital graphs of primitive groups with the socle A<sub>7</sub> x A<sub>7 </sub>which acts by diagonal action. Firstly, we calculate the element conjugate classes of A7</sub>, then we discuss the stabilizer of two points in A7</sub>. Finally, according to the relation between suborbit and orbital, we obtain the orbitals, and determine the orbital graphs.
基金supported by National Natural Science Foundation of China(Grant Nos.11271267 and 11371204)
文摘Let Γ be a connected regular bipartite graph of order 18 p, where p is a prime. Assume that Γ admits a group acting primitively on one of the bipartition subsets of Γ. Then, in this paper, it is shown that eitherΓ is arc-transitive, or Γ is isomorphic to one of 17 semisymmetric graphs which are constructed from primitive groups of degree 9p.
文摘Davenport's Problem asks:What can we expect of two polynomials,over Z,with the same ranges on almost all residue class fields? This stood out among many separated variable problems posed by Davenport,Lewis and Schinzel.By bounding the degrees,but expanding the maps and variables in Davenport's Problem,Galois stratification enhanced the separated variable theme,solving an Ax and Kochen problem from their Artin Conjecture work.Denef and Loeser applied this to add Chow motive coefficients to previously introduced zeta functions on a diophantine statement.By restricting the variables,but leaving the degrees unbounded,we found the striking distinction between Davenport's problem over Q,solved by applying the Branch Cycle Lemma,and its generalization over any number field,solved by using the simple group classification.This encouraged Thompson to formulate the genus 0 problem on rational function monodromy groups.Guralnick and Thompson led its solution in stages.We look at two developments since the solution of Davenport's problem.Stemming from MacCluer's 1967 thesis,identifying a general class of problems,including Davenport's,as monodromy precise.R(iemann)E(xistence)T(heorem)'s role as a converse to problems generalizing Davenport's,and Schinzel's (on reducibility).We use these to consider:Going beyond the simple group classification to handle imprimitive groups,and what is the role of covers and correspondences in going from algebraic equations to zeta functions with Chow motive coefficients.
文摘Some classical results about linear representations of a finite group G have been also proved for representations of G on non-abelian groups (G-groups). In this paper we establish a decomposition theorem for irreducible G-groups which expresses a suitable irreducible G-group as a tensor product of two projective G-groups in a similar way to the celebrated theorem of Clifford for linear representations. Moreover, we study the non-abelian minimal normal subgroups of G in which this decomposition is possible.