Suppose R is a principal ideal ring, R^* is a multiplicative group which is composed of all reversible elements in R, and Mn(R), GL(n,R), SL(n,R) are denoted by,Mn(R)={A=(aij)n×n|aij∈R,i,j=1,2…,n},G...Suppose R is a principal ideal ring, R^* is a multiplicative group which is composed of all reversible elements in R, and Mn(R), GL(n,R), SL(n,R) are denoted by,Mn(R)={A=(aij)n×n|aij∈R,i,j=1,2…,n},GL(n,R)={g|g∈Mn(R),det g∈R^*},SL(n,R)={g∈GL(n,R)|det g=1},SL(n,R)≤G≤GL(n,R)(n≥3),respectively,then basing on these facts, this paper mainly focus on discussing all extended groups of Gr={(O D^A B)∈G|A∈GL(r,R),(1≤r〈n)}in G when R is a principal ideal ring.展开更多
GVW algorithm was given by Gao, Wang, and Volny in computing a Grobuer bases for ideal in a polynomial ring, which is much faster and more simple than F5. In this paper, the authors generalize GVW algorithm and presen...GVW algorithm was given by Gao, Wang, and Volny in computing a Grobuer bases for ideal in a polynomial ring, which is much faster and more simple than F5. In this paper, the authors generalize GVW algorithm and present an algorithm to compute a Grobner bases for ideal when the coefficient ring is a principal ideal domain. K展开更多
Abstract The Iwasava decomposition is proved for the Steinberg groups of types 2 A 2l?1, 2 D l , 2 E 6, 3 D 4 over the field of fractions of a principal ideal ring. By using this decomposition, it is described that su...Abstract The Iwasava decomposition is proved for the Steinberg groups of types 2 A 2l?1, 2 D l , 2 E 6, 3 D 4 over the field of fractions of a principal ideal ring. By using this decomposition, it is described that subgroups exist between the Steinberg groups over the rings D and K under some restrictions on the ring D.展开更多
Let R be a commutative Noetherian ring and p be a prime ideal of R such that the ideal pRp is principal and ht(p)≠0. In this note, the anthors describe the explicit structure of the injective envelope of the R-module...Let R be a commutative Noetherian ring and p be a prime ideal of R such that the ideal pRp is principal and ht(p)≠0. In this note, the anthors describe the explicit structure of the injective envelope of the R-module R/p.展开更多
In this note, we provide an effective proof of the fundamental structure theorem of finitely generated modules over a principal ideal domain, from which we find the minimality of decomposition for a finitely generated...In this note, we provide an effective proof of the fundamental structure theorem of finitely generated modules over a principal ideal domain, from which we find the minimality of decomposition for a finitely generated module over a principal ideal domain.展开更多
By using the results about polynomial matrix in the system and control theory. this paper gives some discussions about the algebraic properties of polynomial,matrices. The obtained main results include that the,ring o...By using the results about polynomial matrix in the system and control theory. this paper gives some discussions about the algebraic properties of polynomial,matrices. The obtained main results include that the,ring of rr x n polynomial matrices is a principal ideal and principal one-sided ideal ring.展开更多
Let H be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero.In this paper we show that any finitedimensional indecomposable H-module is generated by one ele...Let H be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero.In this paper we show that any finitedimensional indecomposable H-module is generated by one element.In particular,any indecomposable submodule of H under the adjoint action is generated by a special element of H.Using this result,we show that the Hopf algebra H is a principal ideal ring,i.e.,any two-sided ideal of H is generated by one element.As an application,we give explicitly the generators of ideals,primitive ideals,maximal ideals and completely prime ideals of the Taft algebras.展开更多
Let D be an integral domain,F^(+)(D)(resp.,f^(+)(D))be the set of nonzero(resp.,nonzero finitely generated)ideals of D,R_(1)=f+(D)∪{(0)},and R_(2)=F+(D)∪{(0)}.Then(R_(i),㊉,■)for i=1,2 is a commutative semiring wit...Let D be an integral domain,F^(+)(D)(resp.,f^(+)(D))be the set of nonzero(resp.,nonzero finitely generated)ideals of D,R_(1)=f+(D)∪{(0)},and R_(2)=F+(D)∪{(0)}.Then(R_(i),㊉,■)for i=1,2 is a commutative semiring with identity under I㊉J=I+J and I■J=ZJ for all I,J∈R_(i).In this paper,among other things,we show that D is a Priifer domain if and only if every ideal of R_(1)is a k-ideal if and only if R_(1)is Gaussian.We also show that D is a Dedekind domain if and only if R_(2)is a unique factorization semidomain if and only if R_(2)is a principal ideal semidomain.These results are proved in a more general setting of star operations on D.展开更多
In this paper,the authors define the homology of sets,which comes from and contains the ideas of path homology and embedded homology.Moreover,A Kunneth formula for sets associated to the homology of sets is given.
In this paper, some characterizations of prime submodules in flat modules and, particularly, in free modules are given. Furthermore, the height of prime submodules and some saturated chain of prime submodules are also...In this paper, some characterizations of prime submodules in flat modules and, particularly, in free modules are given. Furthermore, the height of prime submodules and some saturated chain of prime submodules are also given.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(10771093)
文摘Suppose R is a principal ideal ring, R^* is a multiplicative group which is composed of all reversible elements in R, and Mn(R), GL(n,R), SL(n,R) are denoted by,Mn(R)={A=(aij)n×n|aij∈R,i,j=1,2…,n},GL(n,R)={g|g∈Mn(R),det g∈R^*},SL(n,R)={g∈GL(n,R)|det g=1},SL(n,R)≤G≤GL(n,R)(n≥3),respectively,then basing on these facts, this paper mainly focus on discussing all extended groups of Gr={(O D^A B)∈G|A∈GL(r,R),(1≤r〈n)}in G when R is a principal ideal ring.
基金supported by the National Natural Science Foundation of China under Grant Nos.11071062,11271208Scientific Research Fund of Hunan Province Education Department under Grant Nos.10A033,12C0130
文摘GVW algorithm was given by Gao, Wang, and Volny in computing a Grobuer bases for ideal in a polynomial ring, which is much faster and more simple than F5. In this paper, the authors generalize GVW algorithm and present an algorithm to compute a Grobner bases for ideal when the coefficient ring is a principal ideal domain. K
文摘Abstract The Iwasava decomposition is proved for the Steinberg groups of types 2 A 2l?1, 2 D l , 2 E 6, 3 D 4 over the field of fractions of a principal ideal ring. By using this decomposition, it is described that subgroups exist between the Steinberg groups over the rings D and K under some restrictions on the ring D.
基金This research is in part supported by a grant from IPM.
文摘Let R be a commutative Noetherian ring and p be a prime ideal of R such that the ideal pRp is principal and ht(p)≠0. In this note, the anthors describe the explicit structure of the injective envelope of the R-module R/p.
文摘In this note, we provide an effective proof of the fundamental structure theorem of finitely generated modules over a principal ideal domain, from which we find the minimality of decomposition for a finitely generated module over a principal ideal domain.
文摘By using the results about polynomial matrix in the system and control theory. this paper gives some discussions about the algebraic properties of polynomial,matrices. The obtained main results include that the,ring of rr x n polynomial matrices is a principal ideal and principal one-sided ideal ring.
基金supported by the National Natural Science Foundation of China(Grant No.11871063)supported by the Qing Lan project.
文摘Let H be a finite-dimensional pointed Hopf algebra of rank one over an algebraically closed field of characteristic zero.In this paper we show that any finitedimensional indecomposable H-module is generated by one element.In particular,any indecomposable submodule of H under the adjoint action is generated by a special element of H.Using this result,we show that the Hopf algebra H is a principal ideal ring,i.e.,any two-sided ideal of H is generated by one element.As an application,we give explicitly the generators of ideals,primitive ideals,maximal ideals and completely prime ideals of the Taft algebras.
基金supported by the Incheon National University Research Grant in 2018(Grant No.2018-0014).
文摘Let D be an integral domain,F^(+)(D)(resp.,f^(+)(D))be the set of nonzero(resp.,nonzero finitely generated)ideals of D,R_(1)=f+(D)∪{(0)},and R_(2)=F+(D)∪{(0)}.Then(R_(i),㊉,■)for i=1,2 is a commutative semiring with identity under I㊉J=I+J and I■J=ZJ for all I,J∈R_(i).In this paper,among other things,we show that D is a Priifer domain if and only if every ideal of R_(1)is a k-ideal if and only if R_(1)is Gaussian.We also show that D is a Dedekind domain if and only if R_(2)is a unique factorization semidomain if and only if R_(2)is a principal ideal semidomain.These results are proved in a more general setting of star operations on D.
基金supported by the National Natural Science Foundation of China(No.12001310)Science and Technology Project of Hebei Education Department(No.QN2019333)+2 种基金the Natural Fund of Cangzhou Science and Technology Bureau(No.197000002)a Project of Cangzhou Normal University(No.xnjjl1902)China Postdoctoral Science Foundation(No.2020M680494)。
文摘In this paper,the authors define the homology of sets,which comes from and contains the ideas of path homology and embedded homology.Moreover,A Kunneth formula for sets associated to the homology of sets is given.
文摘In this paper, some characterizations of prime submodules in flat modules and, particularly, in free modules are given. Furthermore, the height of prime submodules and some saturated chain of prime submodules are also given.