The accurate extraction and classification of leather defects is an important guarantee for the automation and quality evaluation of leather industry. Aiming at the problem of data classification of leather defects,a ...The accurate extraction and classification of leather defects is an important guarantee for the automation and quality evaluation of leather industry. Aiming at the problem of data classification of leather defects,a hierarchical classification for defects is proposed.Firstly,samples are collected according to the method of minimum rectangle,and defects are extracted by image processing method.According to the geometric features of representation, they are divided into dot,line and surface for rough classification. From analysing the data which extracting the defects of geometry,gray and texture,the dominating characteristics can be acquired. Each type of defect by choosing different and representative characteristics,reducing the dimension of the data,and through these characteristics of clustering to achieve convergence effectively,realize extracted accurately,and digitized the defect characteristics,eventually establish the database. The results showthat this method can achieve more than 90% accuracy and greatly improve the accuracy of classification.展开更多
Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA ...Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA algorithm,the PCA and the Bagging PLS are combined.In this method,multiple PLS models are trained on sub-training sets,derived from the training set using the random sampling with replacement approach.The regression coefficients of all the sub-PLS models are fused in a joint regression coefficient matrix.The final projection direction is then estimated by performing the PCA on the joint regression coefficient matrix.Subsequently,the proposed PMA method is compared with other traditional dimension reduction methods,such as PLS,Bagging PLS,Linear discriminant analysis(LDA)and PLS-LDA.Experimental results on six public datasets demonstrate that our proposed method consistently outperforms other approaches in terms of classification performance and exhibits greater stability.Additionally,it is employed in the application of financial statement fraud identification.PMA and other five algorithms are utilized to financial statement fraud which concerned by the academic community,and the results indicate that the classification of PMA surpassed that of the other methods.展开更多
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ...In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.展开更多
An automated method to optimize the definition of the progress variables in the flamelet-based dimension reduction is proposed. The performance of these optimized progress variables in coupling the flamelets and flow ...An automated method to optimize the definition of the progress variables in the flamelet-based dimension reduction is proposed. The performance of these optimized progress variables in coupling the flamelets and flow solver is presented. In the proposed method, the progress variables are defined according to the first two principal components (PCs) from the principal component analysis (PCA) or kernel-density-weighted PCA (KEDPCA) of a set of flamelets. These flamelets can then be mapped to these new progress variables instead of the mixture fraction/conventional progress variables. Thus, a new chemistry look-up table is constructed. A priori validation of these optimized progress variables and the new chemistry table is implemented in a CH4/N2/air lift-off flame. The reconstruction of the lift-off flame shows that the optimized progress variables perform better than the conventional ones, especially in the high temperature area. The coefficient determinations (R2 statistics) show that the KEDPCA performs slightly better than the PCA except for some minor species. The main advantage of the KEDPCA is that it is less sensitive to the database. Meanwhile, the criteria for the optimization are proposed and discussed. The constraint that the progress variables should monotonically evolve from fresh gas to burnt gas is analyzed in detail.展开更多
The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The p...The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The priraeipal compohems analysis of the reconstructed space dimension shows only several principal components can be the representation of all dimensions. The correlation dimension analysis proves its fractal characteristic. To accurately compute the largest Lyapunov exponent, the video traffic is divided into many parts.So the largest Lyapunov exponent spectrum is separately calculated using the small data sets method. The largest Lyapunov exponent spectrum shows there exists abundant nonlinear chaos in MPEG-4 video traffic. The conclusion can be made that MPEG-4 video traffic have complex nonlinear be havior and can be characterized by its power spectral density,principal components, correlation dimension and the largest Lyapunov exponent besides its common statistics.展开更多
The evolution of monthly runoff is affected both by climate environment and human activities, and its characteristics play an important role in runoff prediction and simulation. In this paper, the G-P and the principa...The evolution of monthly runoff is affected both by climate environment and human activities, and its characteristics play an important role in runoff prediction and simulation. In this paper, the G-P and the principal component analysis method, which are both based on the reconstruction theory of the phase space, are used to study the chaos characteristics of the monthly runoff series at Fudedian station in Liaohe basin. The results show that the monthly runoff series have a large probability of chaos.展开更多
Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsens...Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsensors for the smart home application. Developing such a model facilitatesthe medical health field (elders or disabled ones). Home automation has alsobeen proven to be a tremendous benefit for the elderly and disabled. Residentsare admitted to smart homes for comfort, luxury, improved quality of life,and protection against intrusion and burglars. This paper proposes a novelsystem that uses principal component analysis, linear discrimination analysisfeature extraction, and random forest as a classifier to improveHGRaccuracy.We have achieved an accuracy of 94% over the publicly benchmarked HGRdataset. The proposed system can be used to detect hand gestures in thehealthcare industry as well as in the industrial and educational sectors.展开更多
文摘The accurate extraction and classification of leather defects is an important guarantee for the automation and quality evaluation of leather industry. Aiming at the problem of data classification of leather defects,a hierarchical classification for defects is proposed.Firstly,samples are collected according to the method of minimum rectangle,and defects are extracted by image processing method.According to the geometric features of representation, they are divided into dot,line and surface for rough classification. From analysing the data which extracting the defects of geometry,gray and texture,the dominating characteristics can be acquired. Each type of defect by choosing different and representative characteristics,reducing the dimension of the data,and through these characteristics of clustering to achieve convergence effectively,realize extracted accurately,and digitized the defect characteristics,eventually establish the database. The results showthat this method can achieve more than 90% accuracy and greatly improve the accuracy of classification.
基金Supported by the Beijing Municipal Social Science Foundation(SZ202210005004)Beijing Natural Science Foundation(9242004)。
文摘Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA algorithm,the PCA and the Bagging PLS are combined.In this method,multiple PLS models are trained on sub-training sets,derived from the training set using the random sampling with replacement approach.The regression coefficients of all the sub-PLS models are fused in a joint regression coefficient matrix.The final projection direction is then estimated by performing the PCA on the joint regression coefficient matrix.Subsequently,the proposed PMA method is compared with other traditional dimension reduction methods,such as PLS,Bagging PLS,Linear discriminant analysis(LDA)and PLS-LDA.Experimental results on six public datasets demonstrate that our proposed method consistently outperforms other approaches in terms of classification performance and exhibits greater stability.Additionally,it is employed in the application of financial statement fraud identification.PMA and other five algorithms are utilized to financial statement fraud which concerned by the academic community,and the results indicate that the classification of PMA surpassed that of the other methods.
基金supported by National High Technology Research and Development Program of China (863 Program)(No. 2009AA04Z162)National Nature Science Foundation of China(No. 60825302, No. 60934007, No. 61074061)+1 种基金Program of Shanghai Subject Chief Scientist,"Shu Guang" project supported by Shang-hai Municipal Education Commission and Shanghai Education Development FoundationKey Project of Shanghai Science and Technology Commission, China (No. 10JC1403400)
文摘In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.
基金Project supported by the National Natural Science Foundation of China(Nos.50936005,51576182,and 11172296)
文摘An automated method to optimize the definition of the progress variables in the flamelet-based dimension reduction is proposed. The performance of these optimized progress variables in coupling the flamelets and flow solver is presented. In the proposed method, the progress variables are defined according to the first two principal components (PCs) from the principal component analysis (PCA) or kernel-density-weighted PCA (KEDPCA) of a set of flamelets. These flamelets can then be mapped to these new progress variables instead of the mixture fraction/conventional progress variables. Thus, a new chemistry look-up table is constructed. A priori validation of these optimized progress variables and the new chemistry table is implemented in a CH4/N2/air lift-off flame. The reconstruction of the lift-off flame shows that the optimized progress variables perform better than the conventional ones, especially in the high temperature area. The coefficient determinations (R2 statistics) show that the KEDPCA performs slightly better than the PCA except for some minor species. The main advantage of the KEDPCA is that it is less sensitive to the database. Meanwhile, the criteria for the optimization are proposed and discussed. The constraint that the progress variables should monotonically evolve from fresh gas to burnt gas is analyzed in detail.
基金Supported by the National Natural Science Founda-tion of China (60132030)
文摘The main research motive is to analysis and to veiny the inherent nonlinear character of MPEG-4 video. The power spectral density estimation of the video trafiic describes its 1/f^β and periodic characteristics.The priraeipal compohems analysis of the reconstructed space dimension shows only several principal components can be the representation of all dimensions. The correlation dimension analysis proves its fractal characteristic. To accurately compute the largest Lyapunov exponent, the video traffic is divided into many parts.So the largest Lyapunov exponent spectrum is separately calculated using the small data sets method. The largest Lyapunov exponent spectrum shows there exists abundant nonlinear chaos in MPEG-4 video traffic. The conclusion can be made that MPEG-4 video traffic have complex nonlinear be havior and can be characterized by its power spectral density,principal components, correlation dimension and the largest Lyapunov exponent besides its common statistics.
文摘The evolution of monthly runoff is affected both by climate environment and human activities, and its characteristics play an important role in runoff prediction and simulation. In this paper, the G-P and the principal component analysis method, which are both based on the reconstruction theory of the phase space, are used to study the chaos characteristics of the monthly runoff series at Fudedian station in Liaohe basin. The results show that the monthly runoff series have a large probability of chaos.
基金supported by a grant (2021R1F1A1063634)of the Basic Science Research Program through the National Research Foundation (NRF)funded by the Ministry of Education,Republic of Korea.
文摘Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsensors for the smart home application. Developing such a model facilitatesthe medical health field (elders or disabled ones). Home automation has alsobeen proven to be a tremendous benefit for the elderly and disabled. Residentsare admitted to smart homes for comfort, luxury, improved quality of life,and protection against intrusion and burglars. This paper proposes a novelsystem that uses principal component analysis, linear discrimination analysisfeature extraction, and random forest as a classifier to improveHGRaccuracy.We have achieved an accuracy of 94% over the publicly benchmarked HGRdataset. The proposed system can be used to detect hand gestures in thehealthcare industry as well as in the industrial and educational sectors.