期刊文献+
共找到110篇文章
< 1 2 6 >
每页显示 20 50 100
Identification of Mine Water Inrush Source Based on PCA-BP Neural Network
1
作者 Mingcheng Ning Haifeng Lu 《International Journal of Geosciences》 2023年第8期710-718,共9页
It is of great significance to analyze the chemical indexes of mine water and develop a rapid identification system of water source, which can quickly and accurately distinguish the causes of water inrush and identify... It is of great significance to analyze the chemical indexes of mine water and develop a rapid identification system of water source, which can quickly and accurately distinguish the causes of water inrush and identify the source of water inrush, so as to reduce casualties and economic losses and prevent and control water inrush disasters. Taking Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup> + K<sup>+</sup>, , , Cl<sup>-</sup>, pH value and TDS as discriminant indexes, the principal component analysis method was used to reduce the dimension of data, and the identification model of mine water inrush source based on PCA-BP neural network was established. 96 sets of data of different aquifers in Panxie mining area were selected for prediction analysis, and 20 sets of randomly selected data were tested, with an accuracy rate of 95%. The model can effectively reduce data redundancy, has a high recognition rate, and can accurately and quickly identify the water source of mine water inrush. 展开更多
关键词 Mine Water Inrush Analysis of Hydrochemical Characteristics principal component Analysis (PCA) Back propagation neural networks Water Source Identification
下载PDF
AGGREGATE VOLUMETRIC ESTIMATION BASED ON PCA AND MOMENTUM-ENHANCED BP NEURAL NETWORK
2
作者 Chen Ken Zhao Pan +1 位作者 Batur Celal Zhang Yun 《Journal of Electronics(China)》 2009年第5期637-643,共7页
This paper proposes a Back Propagation (BP) neural network with momentum enhancement aiming to achieving the smooth convergence for aggregate volumetric estimation purpose. Network inputs are first selected by optical... This paper proposes a Back Propagation (BP) neural network with momentum enhancement aiming to achieving the smooth convergence for aggregate volumetric estimation purpose. Network inputs are first selected by optically measuring the eight geometry-related parameters from the given particle image. To simplify the network structure, principal component analysis technique is applied to reduce the input dimension. The specific network structure is finalized based on both empirical expertise and analysis on selecting the appropriate number of neurons in hidden layer. The network is trained using the finite number of randomly-picked particles. The training and test results suggest that, compared to the generic BP network, the training duration of the proposed neural network is greatly attenuated, the complexity of the network structure is largely reduced, and the estimation precision is within 2%, being sufficiently up to technical satisfaction. 展开更多
关键词 Aggregate volume Back propagation (BP) neural network MOMENTUM Volume estimate principal component Analysis (PCA)
下载PDF
基于PCA-BP神经网络的古代玻璃分类模型
3
作者 陈世豪 王元奎 +2 位作者 李肖兵 李勇 胡立坤 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第5期1088-1098,共11页
为了有效地鉴别古代玻璃并分析其主要成分,提出了一种预测古文物玻璃制品类型的方法。根据现有数据测量得到13种主要化学成分含量,基于主成分分析(PCA),将所得主成分作为反向传播算法(BP)神经网络的输入,构造一种基于PCA-BP神经网络的... 为了有效地鉴别古代玻璃并分析其主要成分,提出了一种预测古文物玻璃制品类型的方法。根据现有数据测量得到13种主要化学成分含量,基于主成分分析(PCA),将所得主成分作为反向传播算法(BP)神经网络的输入,构造一种基于PCA-BP神经网络的古代玻璃分类模型。实验中,选择80%的数据作为训练集与测试集,选择20%的数据作为验证集。结果表明:对玻璃文物样品提取的主成分有显著贡献的化学成分为SiO 2、K 2O、PbO和BaO;改进后的模型与传统神经网络模型相比,对样品预测平均相对误差率小于4%,迭代时间缩短,对未知的古玻璃文物样品的预测估计更精确;提出的玻璃分类模型在不同地区的不同数据集上有可靠的精确度,并相较于Logistics模型有较好的预测效果。 展开更多
关键词 玻璃 主成分分析 反向传播算法 神经网络
下载PDF
Classification and Identification of Nuclear, Biological or Chemical Agents Taken from Remote Sensing Image by Using Neural Network
4
作者 Said El Yamani Samir Zeriouh Mustapha Boutahri Ahmed Roukhe 《Journal of Physical Science and Application》 2014年第3期177-182,共6页
In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural n... In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient. 展开更多
关键词 Artificial neural networks classification identification principal component analysis multi-layer perceptron back propagation of the gradient.
下载PDF
New Approaches for Image Compression Using Neural Network
5
作者 Vilas H. Gaidhane Vijander Singh +1 位作者 Yogesh V. Hote Mahendra Kumar 《Journal of Intelligent Learning Systems and Applications》 2011年第4期220-229,共10页
An image consists of large data and requires more space in the memory. The large data results in more transmission time from transmitter to receiver. The time consumption can be reduced by using data compression techn... An image consists of large data and requires more space in the memory. The large data results in more transmission time from transmitter to receiver. The time consumption can be reduced by using data compression techniques. In this technique, it is possible to eliminate the redundant data contained in an image. The compressed image requires less memory space and less time to transmit in the form of information from transmitter to receiver. Artificial neural net- work with feed forward back propagation technique can be used for image compression. In this paper, the Bipolar Coding Technique is proposed and implemented for image compression and obtained the better results as compared to Principal Component Analysis (PCA) technique. However, the LM algorithm is also proposed and implemented which can acts as a powerful technique for image compression. It is observed that the Bipolar Coding and LM algorithm suits the best for image compression and processing applications. 展开更多
关键词 Image Compression FEED FORWARD Back propagation neural network principal component Analysis (PCA) LEVENBERG-MARQUARDT (LM) Algorithm PSNR MSE
下载PDF
Research on Application of Enhanced Neural Networks in Software Risk Analysis
6
作者 Zhenbang Rong Juhua Chen +1 位作者 Mei Liu Yong Hu 《南昌工程学院学报》 CAS 2006年第2期112-116,121,共6页
This paper puts forward a risk analysis model for software projects using enranced neural networks.The data for analysis are acquired through questionnaires from real software projects. To solve the multicollinearity ... This paper puts forward a risk analysis model for software projects using enranced neural networks.The data for analysis are acquired through questionnaires from real software projects. To solve the multicollinearity in software risks, the method of principal components analysis is adopted in the model to enhance network stability.To solve uncertainty of the neural networks structure and the uncertainty of the initial weights, genetic algorithms is employed.The experimental result reveals that the precision of software risk analysis can be improved by using the erhanced neural networks model. 展开更多
关键词 software risk analysis principal components analysis back propagation neural networks genetic algorithms
下载PDF
基于PCA-BPNN算法的房价预测应用研究
7
作者 张璐璐 麻晓敏 +1 位作者 王星月 孙俊杰 《长春工程学院学报(自然科学版)》 2024年第2期114-118,共5页
房价是影响人民生活幸福指数的重要因素,因此合理地进行房价预测意义重大。以经典预测数据集——波士顿房价数据集为例,提出一种基于主成分分析(PCA)的3层BP神经网络模型的改进算法PCA-BPNN来进行房价预测。在对数据集进行数据标准化处... 房价是影响人民生活幸福指数的重要因素,因此合理地进行房价预测意义重大。以经典预测数据集——波士顿房价数据集为例,提出一种基于主成分分析(PCA)的3层BP神经网络模型的改进算法PCA-BPNN来进行房价预测。在对数据集进行数据标准化处理和主成分分析降维的基础上,通过调整BP神经网络模型的隐含层神经元数、学习次数等参数来优化预测模型。最后,利用MATLAB对数据进行仿真试验。试验结果表明,提出的模型预测准确率较改进前的BP神经网络模型有所提升,提升幅度最高可达90.4772%。 展开更多
关键词 BP神经网络 房价预测 数据预处理 主成分分析 累计贡献率
下载PDF
基于PCA-BP神经网络的煤与瓦斯突出预测研究 被引量:73
8
作者 朱志洁 张宏伟 +1 位作者 韩军 宋卫华 《中国安全科学学报》 CAS CSCD 北大核心 2013年第4期45-50,共6页
为提高煤与瓦斯突出预测的效率和准确率,将主成分分析(PCA)法与神经网络相结合,对煤与瓦斯突出进行预测。以平顶山八矿为研究对象,基于地质动力区划方法,搜集影响煤与瓦斯突出的因素的相关数据。通过PCA法提取影响因素的主成分,选取贡... 为提高煤与瓦斯突出预测的效率和准确率,将主成分分析(PCA)法与神经网络相结合,对煤与瓦斯突出进行预测。以平顶山八矿为研究对象,基于地质动力区划方法,搜集影响煤与瓦斯突出的因素的相关数据。通过PCA法提取影响因素的主成分,选取贡献率大于80%的3个主成分,代替原有的9个影响因素,将其作为反向传播(BP)神经网络的3个输入参数。将突出强度划分为4个等级,建立PCA-BP煤与瓦斯突出预测模型。选取典型的突出样本对PCA-BP神经网络进行训练,用检验样本检验训练好的网络,结果表明预测符合实际情况。 展开更多
关键词 煤与瓦斯突出 地质动力区划 主成分分析(PCA) 反向传播(BP)神经网络 仿真预测
下载PDF
基于DPCA-BP神经网络的中长期电力负荷预测方法 被引量:9
9
作者 张石 张瑞友 汪定伟 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期482-485,共4页
针对PCA-神经网络预测方法解决预测问题时,忽视数据自相关性而造成的预测结果难以满足实际工程要求精度的研究现状,建立了预测数据的增广矩阵.通过计算前l时刻数据确定增广矩阵的维数,并把得到增广后的预测数据作为BP神经网络的输入变量... 针对PCA-神经网络预测方法解决预测问题时,忽视数据自相关性而造成的预测结果难以满足实际工程要求精度的研究现状,建立了预测数据的增广矩阵.通过计算前l时刻数据确定增广矩阵的维数,并把得到增广后的预测数据作为BP神经网络的输入变量,建立了基于DPCA-BP神经网络的预测模型,给出了模型结构.该模型能有效地去除自变量系统中与因变量无关的数据信息,增加自变量系统中数据的自相关性.算例比较分析表明,所建立模型的模型成分解释性增强,预测精度提高,预测效果优于PCA-BP神经网络方法. 展开更多
关键词 动态主元分析 数据拟合 BP神经网络 负荷预测 电力系统
下载PDF
基于PCA-BPNN方法的中长期电力负荷预测 被引量:2
10
作者 张石 张瑞友 汪定伟 《控制工程》 CSCD 北大核心 2010年第6期800-802,共3页
针对基于反向传播神经网络(Back-Propagation Neural Network,BPNN)的中长期电力负荷预测算法中,预测模型的精度和泛化能力易受输入样本变量影响这一问题,利用主元分析(Principal Component Analysis,PCA)方法能消除变量间相关性的特点,... 针对基于反向传播神经网络(Back-Propagation Neural Network,BPNN)的中长期电力负荷预测算法中,预测模型的精度和泛化能力易受输入样本变量影响这一问题,利用主元分析(Principal Component Analysis,PCA)方法能消除变量间相关性的特点,对BPNN的输入空间进行重构,消除重叠信息,提取主导因素,优化了网络结构,提高了预测精度。通过实例验证了该方法的有效性。此方法可以使用电计划部门实时、准确的预测电力负荷,以此最优的配比发电机组,也可减少由于预测不准确带来的电力系统各种故障的发生。 展开更多
关键词 主元分析 BP神经网络 负荷预测 电力系统
下载PDF
RDWKCPSO-PCA-BPNN的汽车燃油消耗预测 被引量:2
11
作者 姜平 祖春胜 李晓勇 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期7-13,共7页
针对不同乘用车综合工况下理论百公里燃油消耗数据,文章提出了一种基于主成分分析(principal component analysis,PCA)和BP神经网络(back propagation neural network,BPNN)的燃油消耗预测模型;通过PCA方法对选取影响理论燃油消耗的24... 针对不同乘用车综合工况下理论百公里燃油消耗数据,文章提出了一种基于主成分分析(principal component analysis,PCA)和BP神经网络(back propagation neural network,BPNN)的燃油消耗预测模型;通过PCA方法对选取影响理论燃油消耗的24个因素进行压缩,简化模型结构,再利用BPNN算法,构建燃油消耗预测模型;由于神经网络中的权值和阈值对预测模型效果影响较大,采用基于随机动态惯性权重和Kent映射的混沌粒子群算法(RDWKCPSO)优化PCA-BPNN模型中的权值和阈值。对3种标准函数的寻优测试结果表明,RDWKCPSO优化算法更容易跳出局部最优实现全局寻优,提高了模型适应能力及预测精度。 展开更多
关键词 BP神经网络 权值和阈值 混沌粒子群算法 主成分分析 燃油消耗预测 Kent映射
下载PDF
一种基于PCA-BP 神经网络的示例优选方法 被引量:5
12
作者 章宗标 《计算机工程与应用》 CSCD 2013年第19期108-111,172,共5页
在音频示例检索的研究中,针对示例数据量大而导致计算代价大、检索时间长和噪声鲁棒性差等问题,提出了一种基于主成分分析(PCA)和BP神经网络(BPNN)的示例优选方法。以信号鲁棒性评分为依据构建数据集合,使用主成分分析得到段级特征,消... 在音频示例检索的研究中,针对示例数据量大而导致计算代价大、检索时间长和噪声鲁棒性差等问题,提出了一种基于主成分分析(PCA)和BP神经网络(BPNN)的示例优选方法。以信号鲁棒性评分为依据构建数据集合,使用主成分分析得到段级特征,消除数据冗余,减少输入变量,最后利用BPNN对保留成分进行建模预测。用PCA-BPNN模型对实验数据进行了验证性测试和分析,结果表明,该方法可以准确而高效地从一段音频中选取鲁棒性好的示例。 展开更多
关键词 主成分分析 BP神经网络 示例优选 多媒体 音频检索
下载PDF
X射线荧光光谱法结合HCA-PCA-BPNN实现塑料快递包装袋识别分类 被引量:6
13
作者 陈壮 姜红 +1 位作者 罗鸿斌 金虹毅 《塑料工业》 CAS CSCD 北大核心 2022年第11期138-144,共7页
X射线荧光光谱法与机器学习有机结合,建立现场塑料快递包装袋物证科学精准识别分类模型。利用X射线荧光光谱法对72个塑料快递包装袋样品无损检验,并依据光谱数据,利用定性半定量分析法对塑料快递包装袋初步分类。利用z-score标准化进行... X射线荧光光谱法与机器学习有机结合,建立现场塑料快递包装袋物证科学精准识别分类模型。利用X射线荧光光谱法对72个塑料快递包装袋样品无损检验,并依据光谱数据,利用定性半定量分析法对塑料快递包装袋初步分类。利用z-score标准化进行光谱预处理,并结合层次聚类、主成分分析和BP神经网络(HCA-PCA-BPNN)建立识别分类模型,确定最佳聚类类别。结果显示,72个样品聚为8类时,模型检验集预测判别正确率为97.9%,预测集预测判别正确率仅为72%,模型识别分类准确度较差;72个样品聚为3类时,模型检验集和预测集预测判别正确率均为100%,识别分类准确度较高,72个样品最佳聚类为3类。研究表明,X射线荧光光谱法结合HCA-PCA-BPNN可以为现场塑料快递包装袋物证无损且准确地识别分类提供一种方便可行的模式。 展开更多
关键词 塑料快递包装袋 X射线荧光光谱法 层次聚类 主成分分析 BP神经网络
下载PDF
基于PCA-BP神经网络的输电线路工程投资概算模型研究 被引量:5
14
作者 王林峰 徐楠 +2 位作者 聂婧 谢延涛 宋妍 《电气传动》 2023年第9期41-48,共8页
传统输电线路(TTL)工程投资概算预测模型存在与实际造价偏差较大、概算管理工作效率低等问题。基于此,研究了基于主成分分析(PCA)和反向(BP)神经网络相结合的新型输电线路工程投资概算预测模型。首先,以影响输电线路工程投资的关键参数... 传统输电线路(TTL)工程投资概算预测模型存在与实际造价偏差较大、概算管理工作效率低等问题。基于此,研究了基于主成分分析(PCA)和反向(BP)神经网络相结合的新型输电线路工程投资概算预测模型。首先,以影响输电线路工程投资的关键参数为初始输入变量,借助PCA对变量进行降维处理以简化输入数据的复杂性。其次,应用相关性剪枝算法优化BP神经网络节点数,进一步提升算法的快速性和准确性。最后,以河北省电力公司2018年01月—2020年01月输电线路工程投资概算数据为样本进行实例研究。结果表明:所设计基于PCA-BP神经网络的概算预测模型的预测准确率相比于支持向量机法(SVM)和BP神经网络法分别提升了70%和29%,具有更快的收敛速度及显著的工程应用价值。 展开更多
关键词 主成分分析 BP神经网络 输电线路 投资概算
下载PDF
阵列误差下的近场源PCA-BP参数估计算法 被引量:2
15
作者 王乐 赵佩瑶 +1 位作者 王兰美 王桂宝 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第1期181-187,共7页
当信号接收阵列存在误差时,阵列的导向矢量将会出现偏差,进而影响到参数估计算法的性能。为了减少阵列误差对参数估计结果的影响和降低计算复杂度,可以采用智能算法与主成分分析结合的方式。首先,利用后向传播神经网络方法将误差和其他... 当信号接收阵列存在误差时,阵列的导向矢量将会出现偏差,进而影响到参数估计算法的性能。为了减少阵列误差对参数估计结果的影响和降低计算复杂度,可以采用智能算法与主成分分析结合的方式。首先,利用后向传播神经网络方法将误差和其他因素包含在网络模型中,避开误差建模的繁琐过程;其次,由于后向传播神经网络训练近场源参数估计模型的时间过长,复杂度较高,为了缩短训练时间,减少计算量,在后向传播网络模型中引进主成分分析方法来降低信号特征矩阵维数,再把降维后的信号特征矩阵作为后向传播神经网络的输入特征,将近场源参数作为期望输出来进行训练,从而简化网络结构,减少训练过程中要估计的权值参数,缩短训练时间;最后,将包含待估计信号信息的接收数据输入到训练好的网络模型中,得到信号入射方向的估计值。该算法能够在接收阵列存在误差的情况下对近场源参数进行准确的估计,提高低信噪比下近场源信号参数的估计性能。仿真实验结果表明了该算法的有效性。 展开更多
关键词 主成分分析 近场源 后向传播神经网络 到达角 协方差矩阵
下载PDF
考虑气象因素的PCA-BP神经网络短期负荷预测 被引量:3
16
作者 王海峰 姜雲腾 李萍 《电工电气》 2018年第7期38-41,共4页
为有效提高电力系统短期负荷预测精度及效率,提出一种基于主成分分析的BP神经网络短期负荷预测优化算法。利用主成分分析法将多个原始变量降维成少数彼此独立的变量作为输入,并根据各主成分的贡献率来确定网络的结构,有效解决BP网络预... 为有效提高电力系统短期负荷预测精度及效率,提出一种基于主成分分析的BP神经网络短期负荷预测优化算法。利用主成分分析法将多个原始变量降维成少数彼此独立的变量作为输入,并根据各主成分的贡献率来确定网络的结构,有效解决BP网络预测精度与效率不高问题。在考虑气象因素的影响下通过对某地区历史负荷数据进行训练仿真,平均预测精度接近98%,预测程序运行效率提高两倍以上,仿真结果表明,该模型在效率和预测精度方面优于BP神经网络模型。 展开更多
关键词 主成分分析 负荷预测 BP神经网络
下载PDF
基于机器学习模型的多层土壤湿度反演 被引量:2
17
作者 刘娣 孙佳倩 余钟波 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期7-14,共8页
为了获取深层土壤湿度缺测值,采用支持向量机、BP神经网络和随机森林3种机器学习算法,在表层至深层土壤中利用主成分分析法选择与土壤湿度相关性显著的气象因子作为输入数据,建立多层土壤湿度反演模型反演了不同深度的土壤湿度。结果表... 为了获取深层土壤湿度缺测值,采用支持向量机、BP神经网络和随机森林3种机器学习算法,在表层至深层土壤中利用主成分分析法选择与土壤湿度相关性显著的气象因子作为输入数据,建立多层土壤湿度反演模型反演了不同深度的土壤湿度。结果表明:随机森林模型模拟结果更加稳定,反演效果更佳;受气象因子驱动的影响,3种机器学习模型对地表0~10 cm深度内土壤湿度的反演效果更佳,对深层土壤湿度的反演效果随着深度增加而变差;增加表层土壤湿度及不同深度土壤温度作为驱动因子可以有效提高机器学习模型对深层土壤湿度的反演能力。 展开更多
关键词 土壤湿度 机器学习 支持向量机 BP神经网络 随机森林 主成分分析法
下载PDF
基于激光诱导击穿光谱的瞬态温度测量方法
18
作者 廖文龙 李哲 +2 位作者 杨玥坪 唐博 魏文赋 《电力工程技术》 北大核心 2024年第4期202-207,共6页
温度是影响材料力学性能的重要因素之一,准确测量器件温度是认识材料在应力作用下其力学性能演变以及评估设备健康状态和寿命的重要方式。面向功率器件开关过程中焊接界面快速温变测量的需求,传统方法存在时间分辨能力不足、难以测量瞬... 温度是影响材料力学性能的重要因素之一,准确测量器件温度是认识材料在应力作用下其力学性能演变以及评估设备健康状态和寿命的重要方式。面向功率器件开关过程中焊接界面快速温变测量的需求,传统方法存在时间分辨能力不足、难以测量瞬态温度的问题。文中基于激光诱导元素特征谱线强度与温度的密切相关性,提出了一种微秒量级时间分辨能力的表面温度测量方法,并建立了样品表面温度与光谱特性之间的定量关系。研究结果表明,物质表面温度提升导致激光诱导等离子体光谱强度和信噪比增强,且增强效果受到光谱采集延时和门宽影响。采用反向传播-人工神经网络(back propagation-artificial neural network,BP-ANN)和偏最小二乘(partial least squares,PLS)法对表面温度与光谱特性关系定量拟合并校准,拟合模型线性相关性拟合度指标均大于0.99。BP-ANN拟合模型的拟合偏差更小,其均方根误差(root mean squared error,RMSE)为2.582,正确率为98.3%。该方法为物体瞬态温度测量提供了一种有效手段,对功率器件焊接界面健康状态的评估给予了有力支撑。 展开更多
关键词 激光诱导击穿光谱 温度测量 主成分分析 时间分辨 偏最小二乘(PLS) 反向传播-人工神经网络(BP-ANN)
下载PDF
基于电子鼻和BP神经网络对‘黑珍珠’鲜食玉米产地的区分和识别
19
作者 马洪江 郝曦煜 +7 位作者 高铭 于有强 杨书恒 刘士伟 马喜山 王文鑫 段盛林 王雪 《食品工业科技》 CAS 北大核心 2024年第13期239-245,共7页
以‘黑珍珠’鲜食玉米为研究对象,采用电子鼻技术分别测定了黑龙江、陕西两大产区共计200个鲜食玉米样品的气味传感器响应值原始数据,通过主成分分析(Principal component analysis,PCA)、判别因子分析(Discriminant function analysis,... 以‘黑珍珠’鲜食玉米为研究对象,采用电子鼻技术分别测定了黑龙江、陕西两大产区共计200个鲜食玉米样品的气味传感器响应值原始数据,通过主成分分析(Principal component analysis,PCA)、判别因子分析(Discriminant function analysis,DFA)对不同产地鲜食玉米的挥发性风味进行了区分,采用软独立建模分析(Soft independent modeling class analogy,SIMCA)建立了黑龙江‘黑珍珠’鲜食玉米的判定模型,并通过Pytorch软件建立了反向传播神经网络(Back propagation neural network,BP神经网络)模型,对不同产地的‘黑珍珠’鲜食玉米进行鉴别区分。结果表明,不同产地的‘黑珍珠’鲜食玉米的挥发性风味虽有相似之处但具有明显的产地特征,SIMCA模型可实现对未知样品是否来自黑龙江产区的有效识别(正确率为97%),BP神经网络模型则可对未知产地的‘黑珍珠’鲜食玉米样品进行产地预测及鉴别,平均正确率达99.44%。采用电子鼻技术结合BP神经网络模型可以准确的区分和识别‘黑珍珠’鲜食玉米产地。 展开更多
关键词 鲜食玉米 电子鼻 主成分分析 软独立建模 BP神经网络 产地鉴别
下载PDF
紫外可见吸收光谱结合主成分-反向传播人工神经网络鉴别真假蜂蜜 被引量:18
20
作者 欧文娟 孟耀勇 +1 位作者 张小燕 孔猛 《分析化学》 SCIE EI CAS CSCD 北大核心 2011年第7期1104-1108,共5页
研究紫外-可见吸收光谱技术结合化学计量学方法鉴别真假蜂蜜。根据蜂蜜中果糖和葡萄糖的典型质量比1.2:1.0,配制与真蜂蜜相近的掺假溶液,并以5%~20%的比例掺入真蜂蜜中。获取纯正蜂蜜和掺假蜂蜜的紫外-可见吸收光谱,选择最佳敏感波段25... 研究紫外-可见吸收光谱技术结合化学计量学方法鉴别真假蜂蜜。根据蜂蜜中果糖和葡萄糖的典型质量比1.2:1.0,配制与真蜂蜜相近的掺假溶液,并以5%~20%的比例掺入真蜂蜜中。获取纯正蜂蜜和掺假蜂蜜的紫外-可见吸收光谱,选择最佳敏感波段250~400 nm的吸光度值进行主成分分析(PCA),优选主成分作为反向传播人工神经网络(BPANN)的输入向量。输出结果显示,校准集和预测集的准确鉴别率均为100%;对应的均方根误差分别为8.523×10-3和8.961×10-3。研究结果表明,基于PCA-BPANN的紫外-可见吸收光谱技术能够方便、快速、准确地鉴别真假蜂蜜,为食品质量的快速检测提供可靠参考。 展开更多
关键词 蜂蜜 掺假 紫外-可见吸收光谱 反向传播人工神经网络 主成分-反向传播人工神经网络
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部