On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat...On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.展开更多
Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computati...Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.展开更多
A new approach to estimating level of uncon-sciousness based on Principal Component Analysis (PCA) is proposed. The Electroen-cephalogram (EEG) data was captured in both Intensive Care Unit (ICU) and operating room, u...A new approach to estimating level of uncon-sciousness based on Principal Component Analysis (PCA) is proposed. The Electroen-cephalogram (EEG) data was captured in both Intensive Care Unit (ICU) and operating room, using different anesthetic drugs. Assuming the central nervous system as a 20-tuple source, window length of 20 seconds is applied to EEG. The mentioned window is considered as 20 nonoverlapping mixed-signals (epoch). PCA algorithm is applied to these epochs, and larg-est remaining eigenvalue (LRE) and smallest remaining eigenvalue (SRE) were extracted. Correlation between extracted parameters (LRE and SRE) and depth of anesthesia (DOA) was measured using Prediction probability (PK). The results show the superiority of SRE than LRE in predicting DOA in the case of ICU and isoflurane, and the slight superiority of LRE than SRE in propofol induction. Finally, a mixture model containing both LRE and SRE could predict DOA as well as Relative Beta Ratio (RBR), which expresses the high capability of the proposed PCA based method in estimating DOA.展开更多
Beam position monitors(BPMs)have been widely used in all kinds of measurement systems,feedback systems and other areas in particle accelerator field these days.The malfunction of a single BPM can cause serious consequ...Beam position monitors(BPMs)have been widely used in all kinds of measurement systems,feedback systems and other areas in particle accelerator field these days.The malfunction of a single BPM can cause serious consequences such as the failure of the orbit feedback and the transverse feedback.A troubleshooting has been made to prevent the defective BPMs from affecting the accuracy and stability of the storage ring in Shanghai Synchrotron Radiation Facility(SSRF).Different types of malfunctions have been successfully identified by using the idea of principal component analysis(PCA).展开更多
Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal com...Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal component analysis)and be separated into two components using BEMD(bi-dimensional empirical mode decomposition):(1)a high background component which represents the ore-forming background developed in rocks through various geological processes favorable for mineralization(i.e.magmatism,sedimentation and/or metamorphism);(2)the anomaly component which reflects the oreforming anomaly that is overprinted on the high background component developed during mineralization.Anomaly components are used to identify ore-finding targets more effectively than ore-forming element groups.Three steps of data analytical procedures are described in this paper;firstly,the application of PCA to establish the ore-forming element group;secondly,using BEMD on the o re-forming element group to identify the anomaly components created by different types of mineralization processes;and finally,identifying ore-finding targets based on the anomaly components.This method is applied to the Tengchong tin-polymetallic belt to delineate ore-finding targets,where four targets for Sn(W)and three targets for Pb-Zn-Ag-Fe polymetallic mineralization are identified and defined as new areas for further prospecting.It is shown that BEMD combined with PCA can be applied not only in extracting the anomaly component for delineating the ore-finding target,but also in extracting the residual component for identifying its high background zone favorable for mineralization from its oreforming element group.展开更多
Full-field measurement techniques such as the scanning laser Doppler vibrometer (LDV) and the electronic speckle pattern interferometry systems can provide a dense and accurate vibration measurement on structural op...Full-field measurement techniques such as the scanning laser Doppler vibrometer (LDV) and the electronic speckle pattern interferometry systems can provide a dense and accurate vibration measurement on structural operating deflection shape (ODS) on a relatively short period of time.The possibility of structural damage detection and localization using the ODS looks likely more attractive than when using traditional measurement techniques which address only a small number of discrete points.This paper discusses the decomposition method of the structural ODSs in the time history using principal component analysis to provide a novel approach to the structural health monitoring and damage detection.The damage indicator is proposed through comparison of structural singular vectors of the ODS variation matrixes between the healthy and damaged stages.A plate piece with a fix-free configuration is used as an example to demonstrate the effectiveness of the damage detection and localization using the proposed method.The simulation results show that:(1) the dominated principal components and the corresponding singular vectors obtained from the decomposition of the structural ODSs maintain most of all vibration information of the plate,especially in the case of harmonic force excitations that the 1st principal component and its vectors mostly dominated in the system;(2) the damage indicator can apparently flag out the damage localization in the case of the different sinusoidal excitation frequencies that may not be close to any of structural natural frequencies.The successful simulation indicates that the proposed method for structural damage detection is novel and robust.It also indicates the potentially practical applications in industries.展开更多
The primary goal in the analysis of hierarchical distributed monitoring and control architectures is to study the spatiotemporal patterns of the interactions between areas or subsystems.In this paper,a novel conceptua...The primary goal in the analysis of hierarchical distributed monitoring and control architectures is to study the spatiotemporal patterns of the interactions between areas or subsystems.In this paper,a novel conceptual framework for distributed monitoring of power system oscillations using multiblock principal component analysis(MB-PCA)and higher-order singular value decomposition(HOSVD)is proposed to understand,characterize,and visualize the global behavior of the power system.The proposed framework can be used to evaluate the influence of a given area or utility on the oscillatory behavior,uncover low-dimensional structures from high-dimensional data,and analyze the effects of heterogeneous data on the modal characteristics and interpretation of power system.The metrics are then investigated to examine the relationships between the dynamic patterns and participation of individual data blocks in the global behavior of the system.Practical application of these techniques is demonstrated by case studies of two systems:a 14-machine test system and a 5449-bus 635-generator equivalent model of a large power system.展开更多
Different signal processing technique performances are compared to each other with regard to separating the mean and fluctuating velocity components of a simulated one-dimensional unsteady velocity signal comparable t...Different signal processing technique performances are compared to each other with regard to separating the mean and fluctuating velocity components of a simulated one-dimensional unsteady velocity signal comparable to signals observed in internal combustion engines. A simulation signal with known mean and fluctuating components was generated using experimental data and generic turbulence spectral information. The simulation signal was generated based on observations on the measured velocity data obtained using LDV in a motored Briggs-and-Stratton engine at about 600 RPM. Experimental data was used as a guide to shape the simulated signal mean velocity variation;fluctuating velocity variations with specified spectrum and standard deviation was used to mimic the turbulence. Cyclic variations were added both to the mean and the fluctuating velocity signals to simulate prescribed cyclic variations. The simulated signal was introduced as input to the following algorithms: ensemble averaging;high-pass filtering;Proper-Orthogonal Decomposition (POD);Wavelet Decomposition (WD) and Wavelet Decomposition/Principal Component Analysis (WD/PCA). The results were analyzed to determine the best method in correctly separating the mean and the fluctuating velocity information, indicating that the WD/PCA performs better compared to other techniques.展开更多
目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singula...目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。展开更多
基金supported by the Social Science Foundation of China under Grant No.17BGL231。
文摘On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.
基金the HKRGC GRF 12306616,12200317,12300218 and 12300519,and HKU Grant 104005583.
文摘Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods.
文摘A new approach to estimating level of uncon-sciousness based on Principal Component Analysis (PCA) is proposed. The Electroen-cephalogram (EEG) data was captured in both Intensive Care Unit (ICU) and operating room, using different anesthetic drugs. Assuming the central nervous system as a 20-tuple source, window length of 20 seconds is applied to EEG. The mentioned window is considered as 20 nonoverlapping mixed-signals (epoch). PCA algorithm is applied to these epochs, and larg-est remaining eigenvalue (LRE) and smallest remaining eigenvalue (SRE) were extracted. Correlation between extracted parameters (LRE and SRE) and depth of anesthesia (DOA) was measured using Prediction probability (PK). The results show the superiority of SRE than LRE in predicting DOA in the case of ICU and isoflurane, and the slight superiority of LRE than SRE in propofol induction. Finally, a mixture model containing both LRE and SRE could predict DOA as well as Relative Beta Ratio (RBR), which expresses the high capability of the proposed PCA based method in estimating DOA.
基金Supported by National Natural Science Foundation of China(No.11075198)
文摘Beam position monitors(BPMs)have been widely used in all kinds of measurement systems,feedback systems and other areas in particle accelerator field these days.The malfunction of a single BPM can cause serious consequences such as the failure of the orbit feedback and the transverse feedback.A troubleshooting has been made to prevent the defective BPMs from affecting the accuracy and stability of the storage ring in Shanghai Synchrotron Radiation Facility(SSRF).Different types of malfunctions have been successfully identified by using the idea of principal component analysis(PCA).
基金funded by the Na-tional Natural Science Foundation of China(Grant Nos.41672329,41272365)the National Key Research and Development Project of China(Grant No.2016YFC0600509)the Project of China Geological Survey(Grant No.1212011120341)
文摘Concentration of elements or element groups in a geological body is the result of multiple stages of rockforming and ore-forming geological processes.An ore-forming element group can be identified by PCA(principal component analysis)and be separated into two components using BEMD(bi-dimensional empirical mode decomposition):(1)a high background component which represents the ore-forming background developed in rocks through various geological processes favorable for mineralization(i.e.magmatism,sedimentation and/or metamorphism);(2)the anomaly component which reflects the oreforming anomaly that is overprinted on the high background component developed during mineralization.Anomaly components are used to identify ore-finding targets more effectively than ore-forming element groups.Three steps of data analytical procedures are described in this paper;firstly,the application of PCA to establish the ore-forming element group;secondly,using BEMD on the o re-forming element group to identify the anomaly components created by different types of mineralization processes;and finally,identifying ore-finding targets based on the anomaly components.This method is applied to the Tengchong tin-polymetallic belt to delineate ore-finding targets,where four targets for Sn(W)and three targets for Pb-Zn-Ag-Fe polymetallic mineralization are identified and defined as new areas for further prospecting.It is shown that BEMD combined with PCA can be applied not only in extracting the anomaly component for delineating the ore-finding target,but also in extracting the residual component for identifying its high background zone favorable for mineralization from its oreforming element group.
基金supported by Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2008383)Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China (Grant No. M0903-021)+1 种基金Nanjing University of Aeronautics and Astronautics Grant for the Talents,China (Grant No.KT50838-021)Jiangsu Provincial Research Foundation for Talented Scholars in Six Fields of China (Grant No. P0951-021)
文摘Full-field measurement techniques such as the scanning laser Doppler vibrometer (LDV) and the electronic speckle pattern interferometry systems can provide a dense and accurate vibration measurement on structural operating deflection shape (ODS) on a relatively short period of time.The possibility of structural damage detection and localization using the ODS looks likely more attractive than when using traditional measurement techniques which address only a small number of discrete points.This paper discusses the decomposition method of the structural ODSs in the time history using principal component analysis to provide a novel approach to the structural health monitoring and damage detection.The damage indicator is proposed through comparison of structural singular vectors of the ODS variation matrixes between the healthy and damaged stages.A plate piece with a fix-free configuration is used as an example to demonstrate the effectiveness of the damage detection and localization using the proposed method.The simulation results show that:(1) the dominated principal components and the corresponding singular vectors obtained from the decomposition of the structural ODSs maintain most of all vibration information of the plate,especially in the case of harmonic force excitations that the 1st principal component and its vectors mostly dominated in the system;(2) the damage indicator can apparently flag out the damage localization in the case of the different sinusoidal excitation frequencies that may not be close to any of structural natural frequencies.The successful simulation indicates that the proposed method for structural damage detection is novel and robust.It also indicates the potentially practical applications in industries.
文摘The primary goal in the analysis of hierarchical distributed monitoring and control architectures is to study the spatiotemporal patterns of the interactions between areas or subsystems.In this paper,a novel conceptual framework for distributed monitoring of power system oscillations using multiblock principal component analysis(MB-PCA)and higher-order singular value decomposition(HOSVD)is proposed to understand,characterize,and visualize the global behavior of the power system.The proposed framework can be used to evaluate the influence of a given area or utility on the oscillatory behavior,uncover low-dimensional structures from high-dimensional data,and analyze the effects of heterogeneous data on the modal characteristics and interpretation of power system.The metrics are then investigated to examine the relationships between the dynamic patterns and participation of individual data blocks in the global behavior of the system.Practical application of these techniques is demonstrated by case studies of two systems:a 14-machine test system and a 5449-bus 635-generator equivalent model of a large power system.
基金sponsored in Summer-2008 by the National Science Foundation Research Experience for Undergraduates University of Alabama site under NSF grant EEC 07554117.
文摘Different signal processing technique performances are compared to each other with regard to separating the mean and fluctuating velocity components of a simulated one-dimensional unsteady velocity signal comparable to signals observed in internal combustion engines. A simulation signal with known mean and fluctuating components was generated using experimental data and generic turbulence spectral information. The simulation signal was generated based on observations on the measured velocity data obtained using LDV in a motored Briggs-and-Stratton engine at about 600 RPM. Experimental data was used as a guide to shape the simulated signal mean velocity variation;fluctuating velocity variations with specified spectrum and standard deviation was used to mimic the turbulence. Cyclic variations were added both to the mean and the fluctuating velocity signals to simulate prescribed cyclic variations. The simulated signal was introduced as input to the following algorithms: ensemble averaging;high-pass filtering;Proper-Orthogonal Decomposition (POD);Wavelet Decomposition (WD) and Wavelet Decomposition/Principal Component Analysis (WD/PCA). The results were analyzed to determine the best method in correctly separating the mean and the fluctuating velocity information, indicating that the WD/PCA performs better compared to other techniques.
文摘目的:为实现从母体腹壁混合信号中提取高信噪比和波形清晰的胎儿心电信号,提出一种融合核主成分分析(kernel principal component analysis,KPCA)、快速独立成分分析(fast independent component analysis,FastICA)及奇异值分解(singular value decomposition,SVD)的胎儿心电信号提取算法。方法:首先,采用KPCA对母体心电信号进行降维,再利用改进的基于负熵的FastICA处理降维后的数据,得到独立成分。随后,引入样本熵进行信号通道选择,挑选出包含最多母体信息的信号通道。在选中的母体通道上进行SVD,得到母体心电信号的近似估计,再用腹壁源信号减去该信号得到胎儿心电的初步估计。最后,采用改进的基于负熵的FastICA成功分离出纯净的胎儿心电信号。在腹部和直接胎儿心电图数据库(Abdominal and Direct Fetal Electrocardiogram Database,ADFECGDB)和PhysioNet 2013挑战赛数据库中对提出的算法进行验证。结果:提出的算法在主观视觉效果和客观评价指标上都表现出优越的性能。在ADFECGDB数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.74%、98.85%和99.30%;在PhysioNet 2013挑战赛数据库中,胎儿QRS复合波检测的敏感度、阳性预测值和F1值分别为99.10%、97.87%和98.48%。结论:融合KPCA、FastICA及SVD的胎儿心电信号提取算法在提取胎儿心电信号的同时有效处理了附加噪声,为胎儿疾病的早期诊断提供了有力支持。