The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
Systematic analyses of seismic data recorded by the Yunnan regional seismograph network reveal significant crustal and upper mantle anisotropy. Splitting of the S phase of local earthquakes and teleseismic SKS, PKS, a...Systematic analyses of seismic data recorded by the Yunnan regional seismograph network reveal significant crustal and upper mantle anisotropy. Splitting of the S phase of local earthquakes and teleseismic SKS, PKS, and SKKS phases indicates time-delays from 1.60 ms/km to 2.30 ms/km in the crust, and from 0.55 s to 1.65 s in the upper mantle which corresponds to an The polarization orientations of fast shear waves in direction, and the mantle anisotropy has a nearly styles and mechanisms exist between the crust and anisotropic layer with a thickness about between 55 165 km. the crust are complicated with a predominantly north-south west-east direction. Our results show different deformation upper mantle.展开更多
Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003, the dominant polarization directions of fast shear-waves are obtained at 10 digital seismic stations by SAM te...Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003, the dominant polarization directions of fast shear-waves are obtained at 10 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan. The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations.show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.展开更多
With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical comp...With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical component. By system clustering,and using the vector synthesis method,the average focal mechanism solution is obtained. Using the above method,this paper analyzes the variation characteristics of the source ruptures and the P-axis azimuths of small earthquakes around the seismic zones before four strong earthquakes occurring since 2003 in the western part of north Tianshan and the middle part of Tianshan. The result shows that 2 ~ 3 years before the strong earthquakes,the focal mechanism types of small earthquakes are distributed randomly, and obvious dominant distributions are observed one year before the strong earthquakes. There are obvious changes in the P-axis azimuth.展开更多
Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area....Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area. The result shows that the time delays of slow shear waves of the DJS station, which is not far from the epicenter and where the distribution of faults is complex near the station, are relatively larger and the polarization directions of fast shear waves are not concentrated; the predominant polarization direction of fast shear waves of WUJ station, with single fault distributed nearby, has a difference of 35° to the strike of the fault and is inconsistent with the direction of regional principal compressive stress. The predominant polarization direction of fast shear waves of SZD station with no faults nearby is in accordance with regional principal compressive stress. There is no obvious regular relationshipship between the delay time and the focal depth.展开更多
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
基金supported by National NaturalScience Foundation of China Project(No.41174042)China National Special Fund for Earthquake Scientific Research in Public Interest(No.201008001)Basic Research Project of Institute of Earthquake Science,CEA(No.2009-21)
文摘Systematic analyses of seismic data recorded by the Yunnan regional seismograph network reveal significant crustal and upper mantle anisotropy. Splitting of the S phase of local earthquakes and teleseismic SKS, PKS, and SKKS phases indicates time-delays from 1.60 ms/km to 2.30 ms/km in the crust, and from 0.55 s to 1.65 s in the upper mantle which corresponds to an The polarization orientations of fast shear waves in direction, and the mantle anisotropy has a nearly styles and mechanisms exist between the crust and anisotropic layer with a thickness about between 55 165 km. the crust are complicated with a predominantly north-south west-east direction. Our results show different deformation upper mantle.
基金National Natural Science Foundation of China (40274011).
文摘Using seismic data recorded by Yunnan Telemetry Seismic Network from January 1, 2000 to December 31, 2003, the dominant polarization directions of fast shear-waves are obtained at 10 digital seismic stations by SAM technique, a systematic analysis method on shear-wave splitting, in this study. The results show that dominant directions of polarizations of fast shear-waves at most stations are mainly at nearly N-S or NNW direction in Yunnan. The dominant polarization directions of fast shear-waves at stations located on the active faults are consistent with the strike of active faults, directions of regional principal compressive strains measured from GPS data, and basically consistent with regional principal compressive stress. Only a few of stations.show complicated polarization pattern of fast shear-waves, or are not consistent with the strike of active faults and the directions of principal GPS compressive strains, which are always located at junction of several faults. The result reflects complicated fault distribution and stress field. The dominant polarization direction of fast shear-wave indicates the direction of the in-situ maximum principal compressive stress is controlled by multiple tectonic aspects such as the regional stress field and faults.
基金funded as a sub-project under the National Science and Technology Pillar Program of China(2006BAC01B03-04-02)
文摘With the point source dislocation model and the velocity structure of a layered medium,focal mechanisms of small earthquakes are calculated using the maximum amplitude of the direct P- and S-waves in the vertical component. By system clustering,and using the vector synthesis method,the average focal mechanism solution is obtained. Using the above method,this paper analyzes the variation characteristics of the source ruptures and the P-axis azimuths of small earthquakes around the seismic zones before four strong earthquakes occurring since 2003 in the western part of north Tianshan and the middle part of Tianshan. The result shows that 2 ~ 3 years before the strong earthquakes,the focal mechanism types of small earthquakes are distributed randomly, and obvious dominant distributions are observed one year before the strong earthquakes. There are obvious changes in the P-axis azimuth.
基金sponsored by the China Spark Program of Earthquake Science and Technology(XH12027)the Three-Combination Topics of China Earthquake Administration of"Research on the Crustal Medium Anisotropy in the Jiujiang-Ruichang Earthquake Area"the Special Fund of Seismic Industry Research(201008007)
文摘Shear wave splitting is studied based on the digital waveforms of three seismic stations DJS, SZD and WUJ, which were set up after the Jiujiang-Ruichang MS5.7 earthquake of November 26, 2005 around the epicenter area. The result shows that the time delays of slow shear waves of the DJS station, which is not far from the epicenter and where the distribution of faults is complex near the station, are relatively larger and the polarization directions of fast shear waves are not concentrated; the predominant polarization direction of fast shear waves of WUJ station, with single fault distributed nearby, has a difference of 35° to the strike of the fault and is inconsistent with the direction of regional principal compressive stress. The predominant polarization direction of fast shear waves of SZD station with no faults nearby is in accordance with regional principal compressive stress. There is no obvious regular relationshipship between the delay time and the focal depth.