Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA ...Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA algorithm,the PCA and the Bagging PLS are combined.In this method,multiple PLS models are trained on sub-training sets,derived from the training set using the random sampling with replacement approach.The regression coefficients of all the sub-PLS models are fused in a joint regression coefficient matrix.The final projection direction is then estimated by performing the PCA on the joint regression coefficient matrix.Subsequently,the proposed PMA method is compared with other traditional dimension reduction methods,such as PLS,Bagging PLS,Linear discriminant analysis(LDA)and PLS-LDA.Experimental results on six public datasets demonstrate that our proposed method consistently outperforms other approaches in terms of classification performance and exhibits greater stability.Additionally,it is employed in the application of financial statement fraud identification.PMA and other five algorithms are utilized to financial statement fraud which concerned by the academic community,and the results indicate that the classification of PMA surpassed that of the other methods.展开更多
Referring to GB5618-1995 about heavy metal pollution,and using statistical analysis SPSS,the major pollutants of mine area farmland heavy metal pollution were identified by variable clustering analysis.Assessment and ...Referring to GB5618-1995 about heavy metal pollution,and using statistical analysis SPSS,the major pollutants of mine area farmland heavy metal pollution were identified by variable clustering analysis.Assessment and classification were done to the mine area farmland heavy metal pollution situation by synthetic principal components analysis (PCA).The results show that variable clustering analysis is efficient to identify the principal components of mine area farmland heavy metal pollution.Sort and clustering were done to the synthetic principal components scores of soil sample,which is given by synthetic principal components analysis.Data structure of soil heavy metal contaminations relationships and pollution level of different soil samples are discovered.The results of mine area farmland heavy metal pollution quality assessed and classified with synthetic component scores reflect the influence of both the major and compound heavy metal pol- lutants.Identification and assessment results of mine area farmland heavy metal pollution can provide reference and guide to propose control measures of mine area farmland heavy metal pollution and focus on the key treatment region.展开更多
A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and...A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.展开更多
A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the...A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.展开更多
As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances,promoting the advancements of human civilization. In rec...As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances,promoting the advancements of human civilization. In recent years, high-entropy alloys(HEAs) have attracted tremendous attention in various fields. With multiple principal components, they inherently possess unique microstructures and many impressive properties, such as high strength and hardness, excellent corrosion resistance, thermal stability, fatigue,fracture, and irradiation resistance, in terms of which they overwhelm the traditional alloys. All these properties have endowed HEAs with many promising potential applications.An in-depth understanding of the essence of HEAs is important to further developing numerous HEAs with better properties and performance in the future. In this paper, we review the recent development of HEAs, and summarize their preparation methods, composition design, phase formation and microstructures, various properties, and modeling and simulation calculations. In addition, the future trends and prospects of HEAs are put forward.展开更多
基金Supported by the Beijing Municipal Social Science Foundation(SZ202210005004)Beijing Natural Science Foundation(9242004)。
文摘Motivated by the Bagging Partial Least Squares(Bagging PLS)and Principal Component Analysis(PCA)algorithms,a novel approach known as Principal Model Analysis(PMA)method is introduced in this paper.In the proposed PMA algorithm,the PCA and the Bagging PLS are combined.In this method,multiple PLS models are trained on sub-training sets,derived from the training set using the random sampling with replacement approach.The regression coefficients of all the sub-PLS models are fused in a joint regression coefficient matrix.The final projection direction is then estimated by performing the PCA on the joint regression coefficient matrix.Subsequently,the proposed PMA method is compared with other traditional dimension reduction methods,such as PLS,Bagging PLS,Linear discriminant analysis(LDA)and PLS-LDA.Experimental results on six public datasets demonstrate that our proposed method consistently outperforms other approaches in terms of classification performance and exhibits greater stability.Additionally,it is employed in the application of financial statement fraud identification.PMA and other five algorithms are utilized to financial statement fraud which concerned by the academic community,and the results indicate that the classification of PMA surpassed that of the other methods.
文摘Referring to GB5618-1995 about heavy metal pollution,and using statistical analysis SPSS,the major pollutants of mine area farmland heavy metal pollution were identified by variable clustering analysis.Assessment and classification were done to the mine area farmland heavy metal pollution situation by synthetic principal components analysis (PCA).The results show that variable clustering analysis is efficient to identify the principal components of mine area farmland heavy metal pollution.Sort and clustering were done to the synthetic principal components scores of soil sample,which is given by synthetic principal components analysis.Data structure of soil heavy metal contaminations relationships and pollution level of different soil samples are discovered.The results of mine area farmland heavy metal pollution quality assessed and classified with synthetic component scores reflect the influence of both the major and compound heavy metal pol- lutants.Identification and assessment results of mine area farmland heavy metal pollution can provide reference and guide to propose control measures of mine area farmland heavy metal pollution and focus on the key treatment region.
基金Project(51175159)supported by the National Natural Science Foundation of ChinaProject(2013WK3024)supported by the Science andTechnology Planning Program of Hunan Province,ChinaProject(CX2013B146)supported by the Hunan Provincial InnovationFoundation for Postgraduate,China
文摘A technology for unintended lane departure warning was proposed. As crucial information, lane boundaries were detected based on principal component analysis of grayscale distribution in search bars of given number and then each search bar was tracked using Kalman filter between frames. The lane detection performance was evaluated and demonstrated in ways of receiver operating characteristic, dice similarity coefficient and real-time performance. For lane departure detection, a lane departure risk evaluation model based on lasting time and frequency was effectively executed on the ARM-based platform. Experimental results indicate that the algorithm generates satisfactory lane detection results under different traffic and lighting conditions, and the proposed warning mechanism sends effective warning signals, avoiding most false warning.
基金Supported by the National Natural Science Foundation of China(61374140)Shanghai Pujiang Program(12PJ1402200)
文摘A novel approach named aligned mixture probabilistic principal component analysis(AMPPCA) is proposed in this study for fault detection of multimode chemical processes. In order to exploit within-mode correlations,the AMPPCA algorithm first estimates a statistical description for each operating mode by applying mixture probabilistic principal component analysis(MPPCA). As a comparison, the combined MPPCA is employed where monitoring results are softly integrated according to posterior probabilities of the test sample in each local model. For exploiting the cross-mode correlations, which may be useful but are inadvertently neglected due to separately held monitoring approaches, a global monitoring model is constructed by aligning all local models together. In this way, both within-mode and cross-mode correlations are preserved in this integrated space. Finally, the utility and feasibility of AMPPCA are demonstrated through a non-isothermal continuous stirred tank reactor and the TE benchmark process.
基金supported by the National Natural Science Foundation of China (51471025 and 51671020)
文摘As human improve their ability to fabricate materials, alloys have evolved from simple to complex compositions, accordingly improving functions and performances,promoting the advancements of human civilization. In recent years, high-entropy alloys(HEAs) have attracted tremendous attention in various fields. With multiple principal components, they inherently possess unique microstructures and many impressive properties, such as high strength and hardness, excellent corrosion resistance, thermal stability, fatigue,fracture, and irradiation resistance, in terms of which they overwhelm the traditional alloys. All these properties have endowed HEAs with many promising potential applications.An in-depth understanding of the essence of HEAs is important to further developing numerous HEAs with better properties and performance in the future. In this paper, we review the recent development of HEAs, and summarize their preparation methods, composition design, phase formation and microstructures, various properties, and modeling and simulation calculations. In addition, the future trends and prospects of HEAs are put forward.