期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Hybrid Neural Network Model for ENSO Prediction in Combination with Principal Oscillation Pattern Analyses 被引量:3
1
作者 Lu ZHOU Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第6期889-902,共14页
El Niño-Southern Oscillation(ENSO)can be currently predicted reasonably well six months and longer,but large biases and uncertainties remain in its real-time prediction.Various approaches have been taken to impro... El Niño-Southern Oscillation(ENSO)can be currently predicted reasonably well six months and longer,but large biases and uncertainties remain in its real-time prediction.Various approaches have been taken to improve understanding of ENSO processes,and different models for ENSO predictions have been developed,including linear statistical models based on principal oscillation pattern(POP)analyses,convolutional neural networks(CNNs),and so on.Here,we develop a novel hybrid model,named as POP-Net,by combining the POP analysis procedure with CNN-long short-term memory(LSTM)algorithm to predict the Niño-3.4 sea surface temperature(SST)index.ENSO predictions are compared with each other from the corresponding three models:POP model,CNN-LSTM model,and POP-Net,respectively.The POP-based pre-processing acts to enhance ENSO-related signals of interest while filtering unrelated noise.Consequently,an improved prediction is achieved in the POP-Net relative to others.The POP-Net shows a high-correlation skill for 17-month lead time prediction(correlation coefficients exceeding 0.5)during the 1994-2020 validation period.The POP-Net also alleviates the spring predictability barrier(SPB).It is concluded that value-added artificial neural networks for improved ENSO predictions are possible by including the process-oriented analyses to enhance signal representations. 展开更多
关键词 ENSO prediction the principal oscillation pattern(POP)analyses neural network a hybrid approach
下载PDF
A local and global statistics pattern analysis method and its application to process fault identification 被引量:4
2
作者 张汉元 田学民 +1 位作者 邓晓刚 蔡连芳 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第11期1782-1792,共11页
Traditional principal component analysis (PCA) is a second-order method and lacks the ability to provide higherorder representations for data variables. Recently, a statistics pattern analysis (SPA) framework has ... Traditional principal component analysis (PCA) is a second-order method and lacks the ability to provide higherorder representations for data variables. Recently, a statistics pattern analysis (SPA) framework has been incorporated into PCA model to make full use of various statistics of data variables effectively. However, these methods omit the local information, which is also important for process monitoring and fault diagnosis. In this paper, a local and global statistics pattern analysis (LGSPA) method, which integrates SPA framework and locality pre- serving projections within the PCK is proposed to utilize various statistics and preserve both local and global in- formation in the observed data. For the purpose of fault detection, two monitoring indices are constructed based on the LGSPA model. In order to identify fault variables, an improved reconstruction based contribution (IRBC) plot based on LGSPA model is proposed to locate fault variables. The RBC of various statistics of original process variables to the monitoring indices is calculated with the proposed RBC method. Based on the calculated RBC of process variables' statistics, a new contribution of process variables is built to locate fault variables. The simula- tion results on a simple six-variable system and a continuous stirred tank reactor system demonstrate that the proposed fault diagnosis method can effectively detect fault and distinguish the fault variables from normal variables. 展开更多
关键词 principal component analysisLocal structure analysisStatistics pattern analysisFault diagnosiscontribution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部