期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
Experimental study on failure characteristics of single-sided unloading rock under different intermediate principal stress conditions 被引量:1
1
作者 Chongyan Liu Guangming Zhao +4 位作者 Wensong Xu Xiangrui Meng Zhixi Liu Xiang Cheng Gang Lin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第3期275-287,共13页
Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial... Investigation of unloading rock failure under differentσ_(2)facilitates the control mechanism of excavation surrounding rock.This study focused on single-sided unloading tests of granite specimens under true triaxial conditions.The strength and failure characteristics were studied with micro-camera and acoustic emission(AE)monitoring.Furthermore,the choice of test path and the effect ofσ_(2)on fracture of unloading rock were discussed.Results show that the increasedσ_(2)can strengthen the stability of single-sided unloading rock.After unloading,the rock’s free surface underwent five phases,namely,inoculation,particle ejection,buckling rupture,stable failure,and unstable rockburst phases.Moreover,atσ_(2)≤30 MPa,the b value shows the following variation tendency:rising,dropping,significant fluctuation,and dropping,with dispersed damages signal.Atσ_(2)≥40 MPa,the tendency shows:a rise,a decrease,a slight fluctuation,and final drop,with concentrated damages signal.After unloading,AE energy is mainly concentrated in the micro-energy range.With the increasedσ_(2),the micro-energy ratio rises.In contrast,low,medium and large energy ratios drop gradually.The increased tensile fractures and decreased shear fractures indicate that the failure mode of the unloading rock gradually changes from tensile-shear mode to tensile-split one.The fractional dimension of the rock fragments first increases and then decreases with an inflection point at 20 MPa.The distribution of SIF on the planes changes asσ_(2)increases,resulting in strengthening and then weakening of the rock bearing capacity. 展开更多
关键词 Single-sided unloading Acoustic emission True triaxial Intermediate principal stress stress intensity factor
下载PDF
Implications for identification of principal stress directions from acoustic emission characteristics of granite under biaxial compression experiments 被引量:1
2
作者 Longjun Dong Yongchao Chen +2 位作者 Daoyuan Sun Yihan Zhang Sijia Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期852-863,共12页
The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side le... The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering. 展开更多
关键词 Two-dimensional stress Fracture characteristics Acoustic emission(AE) Wave velocity principal stress direction
下载PDF
Implications for rock instability precursors and principal stress direction from rock acoustic experiments 被引量:11
3
作者 Longjun Dong Yongchao Chen +1 位作者 Daoyuan Sun Yihan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期789-798,共10页
The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock insta... The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock instability precursors and principal stress direction through wave velocity in rock acoustic emission(AE)experiments.Results show that the wave velocity variation exhibits obvious anisotropic characteristics in 0%–20%and 60%–90%of peak strength due to the differences of stress-induced microcrack types.The amplitude of wave velocity variation is related to the azimuth and position of wave propagation path,which indicates that the principal stress direction can be identified by the anisotropic characteristics of wave velocity variations.Furthermore,the experiments also demonstrate that the AE event rate and wave velocity show quiet and stable variations in the elastic stage of rock samples,while they present a trend of active and unstable variations in the plastic stage.It implies that both the AE event rate and wave velocity are effective monitoring parameters for rock instability.The anisotropic characteristics of the wave velocity variation and AE event rate are beneficial complements for identifying the rock instability precursors and determining the principal stress direction,which provides a new analysis method for stability monitoring in practical rock engineering. 展开更多
关键词 Precursor characteristics Wave velocity Acoustic emission ANISOTROPIC principal stress direction
下载PDF
Investigation of the influence of intermediate principal stress on the dynamic responses of rocks subjected to true triaxial stress state 被引量:7
4
作者 Wei You Feng Dai +2 位作者 Yi Liu Hongbo Du Ruochen Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期913-926,共14页
Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal ... Precisely understanding the dynamic mechanical properties and failure modes of rocks subjected to true triaxial stress state(σ1>σ2>σ3,whereσ1,σ2,andσ3 are the major principal stress,intermediate principal stress,and minor principal stress,respectively)is essential to the safety of underground engineering.However,in the laboratory,it is difficult to maintain the constant true triaxial stress state of rocks during the dynamic testing process.Herein,a numerical servo triaxial Hopkinson bar(NSTHB)was developed to study the dynamic responses of rocks confronted with a true triaxial stress state,in which lateral stresses can maintain constant.The results indicate that the dynamic strength and elastic modulus of rocks increase with the rise of intermediate principal stressσ2,while the dynamic elastic modulus is independent of the dynamic strain rate.Simulated acoustic emission distributions indicate that the intermediate principal stressσ2 dramatically affects dynamic failure modes of triaxial confined rocks.Asσ2 increases,the failure pattern switches from a single diagonal shear zone into two parallel shear zones with a small slant.Moreover,a recent triaxial Hopkinson bar experimental system using three bar pairs is also numerically established,and the measuring discrepancies are identified between the two numerical bar systems.The proposed NSTHB system provides a controllable tool for studying the dynamic triaxial behavior of rocks. 展开更多
关键词 Triaxial Hopkinson bar Intermediate principal stress Dynamic strength Failure modes Numerical simulation True triaxial stress
下载PDF
Failure criterion for soft rocks considering intermediate principal stress 被引量:4
5
作者 Zhongwei Wang Quansheng Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期565-575,共11页
The significant differences between hard rocks(more brittle)and soft rocks(more ductile)may suggest the use of different failure criteria.A strength criterion for soft rocks that includes intermediate principal stress... The significant differences between hard rocks(more brittle)and soft rocks(more ductile)may suggest the use of different failure criteria.A strength criterion for soft rocks that includes intermediate principal stress was proposed.The new criterion includes two independent parameters:the uniaxial compressive strength(σ_(ci)),which can be obtained from common laboratory tests or indirectly estimated by alternative index tests in the laboratory or field;and f(joint),which is used to characterize the rock mass quality and can be easily estimated.The authors compared the predictive capabilities of the new criterion with other criteria using the database of soft rocks under two conditions:with and without triaxial data.For the estimation of triaxial and true-triaxial strengths,the new criterion generally produced a better fit.The proposed criterion is practical for an approximate first estimation of rock mass strength,even without triaxial data,as it balances accuracy(lower prediction error)and simplicity(fewer independent parameters). 展开更多
关键词 Soft rock Intermediate principal stress Failure criterion True-triaxial Uniaxial compressive strength
下载PDF
New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength 被引量:2
6
作者 Rennie Kaunda 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第4期338-347,共10页
Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stre... Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types; (b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type; (c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects. 展开更多
关键词 Artificial neural networks Polyaxial loading Intermediate principal stress Rock failure criteria True triaxial test
下载PDF
Influence of maximum principal stress direction on the failure process and characteristics of D-shaped tunnels
7
作者 Linqi Huang Xuefeng Si +2 位作者 Xibing Li Fengqiang Gong Yong Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1125-1143,共19页
To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped ... To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped hole. The test results show that the failure process can be divided into 4 periods:calm, buckling deformation, gradual buckling and exfoliation of rock fragment, and formation of a Vshaped notch. With an increase in θ from 0° to 90°, the size of the rock fragments first decreases and then increases, whereas the fractal dimension of the rock fragments first increases and then decreases. Meanwhile, the failure position at the left side shifts from the sidewall to the corner and finally to the floor, whereas the failure position at the right side moves from the sidewall to the spandrel and finally to the roof, which is consistent with the failure position in underground engineering. In addition, the initial vertical failure stress first decreases and then increases. By comparing the results,the failure severities at different maximum principal stress directions can be ranked from high to low in the following order: 90°>60°>30°>45°>0°. 展开更多
关键词 Deep D-shaped tunnel ROCKBURST Maximum principal stress direction True-triaxial test V-shaped notch
下载PDF
COORDINATES OF PRINCIPAL STRESSES FOR ELASTIC PLANE PROBLEM
8
作者 黄民丰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第2期157-162,共6页
In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore... In this paper, the equilibrium equations on orthogonal curve coordinates made of curves of principal stresses are disscused and their properties in process of solution are presented through a simple example. Therefore, it is deduced that there is another way to solve problems in elasticity, i.e., by assumption of orthogonal curves of principal stresses. 展开更多
关键词 ELASTICITY equilibrium equation principal stress plane problem orthogonal curve coordinates
下载PDF
Cyclic behavior of reinforced sand under principal stress rotation
9
作者 Alaa H.J. Al-rkaby A. Chegenizadeh H.R. Nikraz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期585-598,共14页
Although the cyclic rotation of the principal stress direction is important,its effect on the deformation behavior and dynamic properties of the reinforced soil has not been reported to date.Tests carried out on large... Although the cyclic rotation of the principal stress direction is important,its effect on the deformation behavior and dynamic properties of the reinforced soil has not been reported to date.Tests carried out on large-scale hollow cylinder samples reveal that the cyclic rotation of the principal stress direction results in significant variations of strain components(ε,ε,εand γ) with periodic characteristics despite the deviatoric stress being constant during tests.This oscillation can be related to the corresponding variations in the stress components and the anisotropic fabric that rotate continuously along the principal stress direction.Sand under rotation appears to develop a plastic strain.Similar trends are observed for reinforced sand,but the shear interaction,the interlocking between particles and reinforcement layer,and the confinement result in significant reductions in the induced strains and associated irrecoverable plastic strains.Most of the strains occur in the first cycle,and as the number of cycles increases,the presence of strains becomes very small,which is almost insignificant.This indicates that the soil has reached anisotropic critical state(ACS),where a stable structure is formed after continuous orientation,realignment and rearrangement of the particles accompanied with increasing cyclic rotation.Rotation in the range of 60°-135° produces more induced strains even in the presence of the reinforcement,when compared with other ranges.This relates to the extension mode of the test in this range in which σ>σand to the relative approach between the mobilized plane and the weakest horizontal plane.Reinforcement results in an increase in shear modulus while it appears to have no effect on the damping ratio.Continuous cycles of rotation result in an increase in shear modulus and lower damping ratio due to the densification that causes a decrease in shear strain and less dissipation of energy. 展开更多
关键词 Cyclic rotation principal stress direction Reinforced sand Strain components Damping ratio Shear modulus
下载PDF
SEPARATION OF PRINCIPAL STRESSES IN DYNAMIC PHOTOELASTICITY
10
作者 励争 苏先基 王仁 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第1期61-69,共9页
A new and effective method used to separate the transient principal stresses for dynamic photoelasticity is proposed. This is a hybrid method combining the optical method of dynamic caustics and the boundary element n... A new and effective method used to separate the transient principal stresses for dynamic photoelasticity is proposed. This is a hybrid method combining the optical method of dynamic caustics and the boundary element numerical method. Firstly, a modified Cranz-Schardin spark camera is used to record simultaneously the isochromatic fringe patterns of photoelasticity and the shadow spot patterns in the dynamic process. By means of the isochromatic fringe patterns, the difference between transient principal stresses in the whole domain and the principal stresses along the free boundary can be solved. In addition, the method of caustics is a very powerful technique for measuring the concentrative load. Then, the sum of the principal stresses is calculated by the boundary integral equation obtained from the Laplace integral transform of the wave equation. So, the transient principal stresses can be determined from the experimental and numerical results. As an example, the transient principal stresses in a polycarbonate disk under an impact load are resolved. 展开更多
关键词 dynamic photoelasticity dynamic caustics boundary integra method principal stress
下载PDF
Pore Water Pressure Buildup Under Cyclic Rotation of Principal Stress and Stability Evaluation of Seabed Deposit
11
作者 Shen Ruifu , Wang Hongjin , Zhou Jinxing and Zhou Keji Former graduate student of Tsinghua University, now works in Nanjing Hydraulic Research Institute, Nanjing 210029Professor, Tsinghua University, Beijing 100084 Senior Engineer, Tsinghua University, Beijing 100084 《China Ocean Engineering》 SCIE EI 1994年第4期471-482,共12页
The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from t... The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from tests simulating the cyclic stress characteristics, with emphasis laid on the buildup of pore water pressure in soil samples. Regression analysis of test data shows that the pore water pressure can be expressed as the function of the number of cycles of cyclic loading, or as the function of generalized shear strain. Using the results thus obtained, the possibility of failure of seabed deposit under cyclic loading induced by travelling waves can be evaluated. The comparison with the results of conventional cyclic torsional shear tests shows that neglect of the effect of the cyclic rotation of the principal stress direction will result in considerable over-estimation of the stability of seabed deposit. 展开更多
关键词 rotation of principal stress direction pore water pressure generalized shear strain residual deformation
下载PDF
Calibration and validation of a sand model considering the effects of wave-induced principal stress axes rotation
12
作者 LIU Peng WANG Zhongtao +1 位作者 LI Xinzhong CHAN Andrew 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第7期105-115,共11页
Principal stress axes rotation influences the stress-strain behavior of sand under wave loading. A constitutive model for sand, which considers principal stress orientation and is based on generalized plasticity theor... Principal stress axes rotation influences the stress-strain behavior of sand under wave loading. A constitutive model for sand, which considers principal stress orientation and is based on generalized plasticity theory, is proposed. The new model, which employs stress invariants and a discrete memory factor during reloading, is original because it quantifies model parameters using experimental data. Four sets of hollow torsion experiments were conducted to calibrate the parameters and predict the capability of the proposed model, which describes the effects of principal stress orientation on the behavior of sand. The results prove the effectiveness of the proposed calibration method. 展开更多
关键词 principal stress axes rotation constitutive model hollow torsional shear experiment
下载PDF
THE GENERAL STRESS STRAIN RELATION OF SOILS INVOLVING THE ROTATION OF PRINCIPAL STRESS AXES
13
作者 刘元雪 郑颖人 陈正汉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第5期437-444,共8页
In the light of matrix theory, the character of stress increment which causes the rotation of principal stress axes is analysed and the general stress increment is decomposed into two parts: coaxial part and rotationa... In the light of matrix theory, the character of stress increment which causes the rotation of principal stress axes is analysed and the general stress increment is decomposed into two parts: coaxial part and rotational part. Based on these, the complex three dimensional (3-D) problem involving the rotation of principal stress axes is simplified to the combination of the 3-D coaxial model and the theory about pure rotation of principal stress axes that is only around one principal stress axes. The difficulty of analysis is reduced significantly. The concrete calculating method of general 3-D problem is provided and other applications are also presented. 展开更多
关键词 matrix theory principal stress axes rotation decomposition of stress increment stress strain relation SOILS
全文增补中
Three-dimensional stress variation characteristics in deep hard rock of CJPL-Ⅱ project based on in-situ monitoring
14
作者 Minzong Zheng Shaojun Li +2 位作者 Zejie Feng Huaisheng Xu Yaxun Xiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期179-195,共17页
In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensi... In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensive examination through laboratory tests and numerical simulations, its validation through insitu stress tests remains unexplored. This study analyzes the three-dimensional stress changes in the surrounding rock at various depths, monitored during the excavation of B2 Lab in China Jinping Underground Laboratory Phase Ⅱ(CJPL-Ⅱ). The investigation delves into the three-dimensional stress variation characteristics in deep hard rock, encompassing stress components and principal stress. The results indicate changes in both the magnitude and direction of the principal stress during tunnel excavation. To quantitatively describe the degree of stress disturbance, a series of stress evaluation indexes are established based on the distances between stress tensors, including the stress disturbance index(SDI), the principal stress magnitude disturbance index(SDIm), and the principal stress direction disturbance index(SDId). The SDI indicates the greatest stress disturbance in the surrounding rock is 4.5 m from the tunnel wall in B2 Lab. SDIm shows that the principal stress magnitude disturbance peaks at2.5 m from the tunnel wall. SDId reveals that the largest change in principal stress direction does not necessarily occur near the tunnel wall but at a specific depth from it. The established relationship between SDI and the depth of the excavation damaged zone(EDZ) can serve as a criterion for determining the depth of the EDZ in deep hard rock engineering. Additionally, it provides a reference for future construction and support considerations. 展开更多
关键词 Disturbance stress Tensor distance stress disturbance index principal stress direction Underground research laboratory
下载PDF
Structural form-finding of bending components in buildings by using parametric tools and principal stress lines
15
作者 Zhenya Yu Hang Dai Ziying Shi 《Frontiers of Architectural Research》 CSCD 2022年第3期561-573,共13页
This paper aims to provide an efficient and straightforward structural form-finding method for designers to extrapolate component forms during the conceptual stage.The core idea is to optimize the classical method of ... This paper aims to provide an efficient and straightforward structural form-finding method for designers to extrapolate component forms during the conceptual stage.The core idea is to optimize the classical method of structural form-finding based on principal stress lines by using parametric tools.The traditional operating process of this method relies excessively on the designer’s engineering experience and lacks precision.Meanwhile,the current optimization work for this method is overly complicated for architects,and limitations in component type and final result exist.Therefore,to facilitate an architect’s conceptual work,the optimization metrics of the method in this paper are set as simplicity,practicality,freedom,and rapid feedback.For that reason,this paper optimizes the method from three aspects:modeling strategy for continuum structures,classification processing of data by using the k-nearest neighbor algorithm,and topological form-finding process based on stress lines.Eventually,it allows architects to create structural texture with formal aesthetics and modify it in real time on the basis of structural analysis results.This paper also explores a comprehensive application strategy with internal force analysis diagramming to form-finding.The finite element analysis tool Karamba3D verifies the structural performance of the form-finding method.The performance is compared with that of the conventional form,and the comparison results show the practicality and potential of the strategy in this paper. 展开更多
关键词 Parametric design Structural formfinding principal stress lines Classification algorithm KNN Internal force analysis Bending components
原文传递
Stress Path Analysis of Deep-Sea Sediments Under the Compression-Shear Coupling Load of Crawler Collectors
16
作者 ZHANG Ning MA Ning +2 位作者 YIN Shiyang CHEN Xuguang SONG Yuheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期65-74,共10页
The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression ... The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression load and a horizontal shear load.Then,the internal stress state of sedimentary soil is examined through a theoretical calculation and finite element numerical simulation.Finally,the driving of crawlers is simulated by changing the relative spatial position between the load and stress unit,obtaining the stress path of the soil unit.Based on the calculation results,the effect of the horizontal shear load on the soil stress response is analyzed at different depths,and the spatial variation law of the soil stress path is examined.The results demonstrate that the horizontal shear load has a significant effect on the rotation of the principal stress,and the reverse rotation of the principal stress axis becomes obvious with the increase in the burial depth.The stress path curve of the soil is different at various depths.The spatial variation rule of the stress path of the shallow soil is complex,whereas the stress path curve of the deep soil tends to shrink as the depth increases.The stress path of the corresponding depth should be selected according to the actual research purpose and applied to the laboratory test. 展开更多
关键词 deep-sea sediment crawler collector compression-shear coupling load stress path principal stress axis direction
下载PDF
The Principals Stress and Coping Strategies in Bedouin Schools in Israel
17
作者 Sleiman Aburkayek 《Chinese Business Review》 2022年第3期91-101,共11页
The purpose of this research is to investigate the principals’stress and coping strategies to deal with stress by principals in Bedouin schools in Israel.Data were collected in this research by combining a quantitati... The purpose of this research is to investigate the principals’stress and coping strategies to deal with stress by principals in Bedouin schools in Israel.Data were collected in this research by combining a quantitative and qualitative mixed method.A quantitative research questionnaire was conducted for school principals in 36 schools,in addition to an interview with three principals based on the causes of principal stress and coping mechanisms.Research results show that the principals experiencing balance had the highest mean(M)of 3.28 and standard deviation(SD)of 1.64 on a five-point scale.Principals experiencing moderate stress was parents(M=3.10,SD=0.57)and teachers(M=3.14,SD=0.54),while workload had the lowest mean(M=2.97,SD=0.64). 展开更多
关键词 BEDOUIN stress principals’stress BURNOUT coping strategies
下载PDF
A STRESS VECTOR-BASED CONSTITUTIVE MODEL FOR COHESIONLESS SOIL (Ⅰ)-THEORY
18
作者 SHI Hong-yan(史宏彦) +1 位作者 XIE Djng-yi(谢定义) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第3期329-340,共12页
On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the actio... On the basis of the sufficient consideration of vectorial characteristics of stress, a new nonlinear constitutive model for cohesionless soil under plane strain and 3-D conditions was presented in a way that the action effects of stress vector are decomposed into the action effect of mean effective stress and that of the stress ratio vector (ratio of deviatoric stress vector to mean effective stress). The constitutive model can take account of the influence of both numerical and directional changes of stress vector on deformation of soil simultaneously, and is applicable of both static and dynamic loading. 展开更多
关键词 cohesionless soil rotation of principal stress axes intermediate principal stress stress vector constitutive model THEORY
下载PDF
Stiffness Degradation of Undisturbed Saturated Soft Clay in the Yangtze Estuary Under Complex Stress Conditions 被引量:6
19
作者 栾茂田 刘功勋 +1 位作者 王忠涛 郭莹 《China Ocean Engineering》 SCIE EI 2010年第3期523-538,共16页
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian ... Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on the saturated soft marine clay in the Yangtze Estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotropic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared with the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does.Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined. 展开更多
关键词 undisturbed saturated soft clay complex stress condition stiffness degradation three-directional anisotropic consolidation continuous rotation of principal stress axes cyclic coupling shear test cyclic torsional shear test
下载PDF
Discussion on rotational tectonic stress field and the genesis of circum-Ordos landmass fault system 被引量:4
20
作者 XIE Xin-sheng(谢新生) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第4期464-472,共9页
When the resultant of applied forces does not pass through the center of an active landmass, the landmass will rotate, giving rise to a rotational tectonic stress field. The motion of a fault along the principal stres... When the resultant of applied forces does not pass through the center of an active landmass, the landmass will rotate, giving rise to a rotational tectonic stress field. The motion of a fault along the principal stress plane is de-termined by the mechanic features of the plane. Tensile fractures occur on the faults in the direction of the principal extensional stress plane, and fault-depression basins will be formed under a long-term action. Thrusting and over-thrusting occur on faults in the direction of the principal compressional stress plane, or folds may be formed as a result. Information on geology shows that the North China landmass, which remained stable and intact for a long time, became disjointed in the Eogene period. In the course of disjunction, anticlockwise rotation took place in the Shanxi-Hebei-Shaanxi (Jin-Ji-Shan) landmass, giving rise to the fault-depression system in its periphery. In the Pliocene epoch the landmass lost stability and its eastern boundary moved westward. As a result, the Shanxi gra-ben system appeared and Ordos landmass was formed. Structural and mechanic features of the main faults around Jin-Ji-Shan landmass can be explained with principal stress plane of a rotational tectonic stress field. 展开更多
关键词 landmass rotation rotational structure principal stress plane Jin-Ji-Shan landmass ORDOS
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部