期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Implications for identification of principal stress directions from acoustic emission characteristics of granite under biaxial compression experiments 被引量:1
1
作者 Longjun Dong Yongchao Chen +2 位作者 Daoyuan Sun Yihan Zhang Sijia Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期852-863,共12页
The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side le... The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering. 展开更多
关键词 Two-dimensional stress Fracture characteristics Acoustic emission(AE) Wave velocity principal stress direction
下载PDF
Three-dimensional stress variation characteristics in deep hard rock of CJPL-Ⅱ project based on in-situ monitoring
2
作者 Minzong Zheng Shaojun Li +2 位作者 Zejie Feng Huaisheng Xu Yaxun Xiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期179-195,共17页
In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensi... In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensive examination through laboratory tests and numerical simulations, its validation through insitu stress tests remains unexplored. This study analyzes the three-dimensional stress changes in the surrounding rock at various depths, monitored during the excavation of B2 Lab in China Jinping Underground Laboratory Phase Ⅱ(CJPL-Ⅱ). The investigation delves into the three-dimensional stress variation characteristics in deep hard rock, encompassing stress components and principal stress. The results indicate changes in both the magnitude and direction of the principal stress during tunnel excavation. To quantitatively describe the degree of stress disturbance, a series of stress evaluation indexes are established based on the distances between stress tensors, including the stress disturbance index(SDI), the principal stress magnitude disturbance index(SDIm), and the principal stress direction disturbance index(SDId). The SDI indicates the greatest stress disturbance in the surrounding rock is 4.5 m from the tunnel wall in B2 Lab. SDIm shows that the principal stress magnitude disturbance peaks at2.5 m from the tunnel wall. SDId reveals that the largest change in principal stress direction does not necessarily occur near the tunnel wall but at a specific depth from it. The established relationship between SDI and the depth of the excavation damaged zone(EDZ) can serve as a criterion for determining the depth of the EDZ in deep hard rock engineering. Additionally, it provides a reference for future construction and support considerations. 展开更多
关键词 Disturbance stress Tensor distance stress disturbance index principal stress direction Underground research laboratory
下载PDF
Implications for rock instability precursors and principal stress direction from rock acoustic experiments 被引量:14
3
作者 Longjun Dong Yongchao Chen +1 位作者 Daoyuan Sun Yihan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期789-798,共10页
The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock insta... The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock instability precursors and principal stress direction through wave velocity in rock acoustic emission(AE)experiments.Results show that the wave velocity variation exhibits obvious anisotropic characteristics in 0%–20%and 60%–90%of peak strength due to the differences of stress-induced microcrack types.The amplitude of wave velocity variation is related to the azimuth and position of wave propagation path,which indicates that the principal stress direction can be identified by the anisotropic characteristics of wave velocity variations.Furthermore,the experiments also demonstrate that the AE event rate and wave velocity show quiet and stable variations in the elastic stage of rock samples,while they present a trend of active and unstable variations in the plastic stage.It implies that both the AE event rate and wave velocity are effective monitoring parameters for rock instability.The anisotropic characteristics of the wave velocity variation and AE event rate are beneficial complements for identifying the rock instability precursors and determining the principal stress direction,which provides a new analysis method for stability monitoring in practical rock engineering. 展开更多
关键词 Precursor characteristics Wave velocity Acoustic emission ANISOTROPIC principal stress direction
下载PDF
Influence of maximum principal stress direction on the failure process and characteristics of D-shaped tunnels
4
作者 Linqi Huang Xuefeng Si +2 位作者 Xibing Li Fengqiang Gong Yong Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期1125-1143,共19页
To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped ... To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped hole. The test results show that the failure process can be divided into 4 periods:calm, buckling deformation, gradual buckling and exfoliation of rock fragment, and formation of a Vshaped notch. With an increase in θ from 0° to 90°, the size of the rock fragments first decreases and then increases, whereas the fractal dimension of the rock fragments first increases and then decreases. Meanwhile, the failure position at the left side shifts from the sidewall to the corner and finally to the floor, whereas the failure position at the right side moves from the sidewall to the spandrel and finally to the roof, which is consistent with the failure position in underground engineering. In addition, the initial vertical failure stress first decreases and then increases. By comparing the results,the failure severities at different maximum principal stress directions can be ranked from high to low in the following order: 90°>60°>30°>45°>0°. 展开更多
关键词 Deep D-shaped tunnel ROCKBURST Maximum principal stress direction True-triaxial test V-shaped notch
下载PDF
Cyclic behavior of reinforced sand under principal stress rotation
5
作者 Alaa H.J. Al-rkaby A. Chegenizadeh H.R. Nikraz 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期585-598,共14页
Although the cyclic rotation of the principal stress direction is important,its effect on the deformation behavior and dynamic properties of the reinforced soil has not been reported to date.Tests carried out on large... Although the cyclic rotation of the principal stress direction is important,its effect on the deformation behavior and dynamic properties of the reinforced soil has not been reported to date.Tests carried out on large-scale hollow cylinder samples reveal that the cyclic rotation of the principal stress direction results in significant variations of strain components(ε,ε,εand γ) with periodic characteristics despite the deviatoric stress being constant during tests.This oscillation can be related to the corresponding variations in the stress components and the anisotropic fabric that rotate continuously along the principal stress direction.Sand under rotation appears to develop a plastic strain.Similar trends are observed for reinforced sand,but the shear interaction,the interlocking between particles and reinforcement layer,and the confinement result in significant reductions in the induced strains and associated irrecoverable plastic strains.Most of the strains occur in the first cycle,and as the number of cycles increases,the presence of strains becomes very small,which is almost insignificant.This indicates that the soil has reached anisotropic critical state(ACS),where a stable structure is formed after continuous orientation,realignment and rearrangement of the particles accompanied with increasing cyclic rotation.Rotation in the range of 60°-135° produces more induced strains even in the presence of the reinforcement,when compared with other ranges.This relates to the extension mode of the test in this range in which σ>σand to the relative approach between the mobilized plane and the weakest horizontal plane.Reinforcement results in an increase in shear modulus while it appears to have no effect on the damping ratio.Continuous cycles of rotation result in an increase in shear modulus and lower damping ratio due to the densification that causes a decrease in shear strain and less dissipation of energy. 展开更多
关键词 Cyclic rotation principal stress direction Reinforced sand Strain components Damping ratio Shear modulus
下载PDF
Pore Water Pressure Buildup Under Cyclic Rotation of Principal Stress and Stability Evaluation of Seabed Deposit
6
作者 Shen Ruifu , Wang Hongjin , Zhou Jinxing and Zhou Keji Former graduate student of Tsinghua University, now works in Nanjing Hydraulic Research Institute, Nanjing 210029Professor, Tsinghua University, Beijing 100084 Senior Engineer, Tsinghua University, Beijing 100084 《China Ocean Engineering》 SCIE EI 1994年第4期471-482,共12页
The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from t... The cyclic rotation of principal stress direction with a constant amplitude is the characteristics of cyclic stress in seabed deposit induced by travelling waves. Presented in the paper are the results obtained from tests simulating the cyclic stress characteristics, with emphasis laid on the buildup of pore water pressure in soil samples. Regression analysis of test data shows that the pore water pressure can be expressed as the function of the number of cycles of cyclic loading, or as the function of generalized shear strain. Using the results thus obtained, the possibility of failure of seabed deposit under cyclic loading induced by travelling waves can be evaluated. The comparison with the results of conventional cyclic torsional shear tests shows that neglect of the effect of the cyclic rotation of the principal stress direction will result in considerable over-estimation of the stability of seabed deposit. 展开更多
关键词 rotation of principal stress direction pore water pressure generalized shear strain residual deformation
下载PDF
Stress Path Analysis of Deep-Sea Sediments Under the Compression-Shear Coupling Load of Crawler Collectors
7
作者 ZHANG Ning MA Ning +2 位作者 YIN Shiyang CHEN Xuguang SONG Yuheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第1期65-74,共10页
The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression ... The mechanical properties of deep-sea sediments during the driving process of crawler collectors are essential factors in the design of mining systems.In this study,a crawler load is divided into a normal compression load and a horizontal shear load.Then,the internal stress state of sedimentary soil is examined through a theoretical calculation and finite element numerical simulation.Finally,the driving of crawlers is simulated by changing the relative spatial position between the load and stress unit,obtaining the stress path of the soil unit.Based on the calculation results,the effect of the horizontal shear load on the soil stress response is analyzed at different depths,and the spatial variation law of the soil stress path is examined.The results demonstrate that the horizontal shear load has a significant effect on the rotation of the principal stress,and the reverse rotation of the principal stress axis becomes obvious with the increase in the burial depth.The stress path curve of the soil is different at various depths.The spatial variation rule of the stress path of the shallow soil is complex,whereas the stress path curve of the deep soil tends to shrink as the depth increases.The stress path of the corresponding depth should be selected according to the actual research purpose and applied to the laboratory test. 展开更多
关键词 deep-sea sediment crawler collector compression-shear coupling load stress path principal stress axis direction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部