We investigate the information exclusion principle for multiple measurements with assistance of multiple quantum memories that are well bounded by the upper and lower bounds.The lower bound depends on the observables&...We investigate the information exclusion principle for multiple measurements with assistance of multiple quantum memories that are well bounded by the upper and lower bounds.The lower bound depends on the observables'complementarity and the complementarity of uncertainty whilst the upper bound includes the complementarity of the observables,quantum discord,and quantum condition entropy.In quantum measurement processing,there exists a relationship between the complementarity of uncertainty and the complementarity of information.In addition,based on the information exclusion principle the complementarity of uncertainty and the shareability of quantum discord can exist as an essential factor to enhance the bounds of each other in the presence of quantum memory.展开更多
The Cooperative Principle proposed by Herbert Paul Grice in 1967 requires speakers’utterances to comply with the objective of discourses,while receivers construct assumptions by reasoning speakers’implicatures.He se...The Cooperative Principle proposed by Herbert Paul Grice in 1967 requires speakers’utterances to comply with the objective of discourses,while receivers construct assumptions by reasoning speakers’implicatures.He set some maxims and sub-maxims to attempt to explain how the hearers get what is meant from what is said by speakers.What interests me is that the Maxim of Relation only includes one simple annotation—Be relevant without any other sub-maxims.Honestly,this is too obscure.So I would like to analyse Grice’s Maxim of Relation from its definition as well as classification,the discourse-topic and the relationship with context.And,more remarkable,the research method of this article is to explore the essence of the Maxim of Relation based on the opposite side as Dan Sperber and Deirdre Susan Moir Wilson’s the Principle of Relevance(Relevance Theory).展开更多
According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this p...According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this paper, an important integral relation is given, which can be considered essentially as the generalized pr- inciple of virtual work. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem of work in theory of elastic materials with voids, but also to derive systematically the complementary functionals for the eight-field, six-field, four-field and two-field generalized variational principles, and the principle of minimum potential and complementary energies. Furthermore, with this appro ach, the intrinsic relationship among various principles can be explained clearly.展开更多
According to the basic idea of dual-complementarity,in a simple and unified way proposed by the author,some basic principles in dynamic theory of elastic materials with voids can be established sys- tematically.In thi...According to the basic idea of dual-complementarity,in a simple and unified way proposed by the author,some basic principles in dynamic theory of elastic materials with voids can be established sys- tematically.In this paper, an important integral relation in terms of convolutions is given,which can be con- sidered as the generalized principle of virtual work in mechanics.Based on this relation,it is possible not on- ly to obtain the principle of virtual work and the reciprocal theorem in dynamic theory of elastic materials with voids,but also to derive systematically the complementary functionals for the eight-field,six-field, four-field and two-field simplified Gurtin-type variational principles.Furthermore,with this approach,the in- trinsic relationship among various principles can be explained clearly.展开更多
From the hypotheses that the position-representation of a physical state is the Fourier transform of its momentum-representation and that the timerepresentation is the inverse Fourier transform of its energy-represent...From the hypotheses that the position-representation of a physical state is the Fourier transform of its momentum-representation and that the timerepresentation is the inverse Fourier transform of its energy-representation, we are able to obtain the Planck relation E = hν , the de Broglie relation p = h /λ , the Dirac fundamental commutation relation, the Schr?dinger equations, the Heisenberg uncertainty principle in quantum mechanics, and the annihilation/creation of a photon from excitation/de-excitation of an atom following Bohr.展开更多
A parameter retrieval algorithm based on the causality principle and Kramers-Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the...A parameter retrieval algorithm based on the causality principle and Kramers-Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the branch selecting problem, which is the challenge of effective parameter retrieval method, can be removed. To reveal the validity of the proposed algorithm, the constitutive refractive index of a homogeneous polymide cube is extracted. The result is in excellent agreement with the intrinsic refractive index of the polymide. Finally, the two terahertz metamaterials with 3D structures are designed and their effective parameters are then retrieved using the proposed algorithm. Numerical simulations are performed using the fuiI-wave electromagnetic solver, CST Microwave Studio.展开更多
Where did matter in the universe come from? Where does the mass of matter come from? Particle physicists have used the knowledge acquired in matter and space to imagine a standard scenario to provide satisfactory answ...Where did matter in the universe come from? Where does the mass of matter come from? Particle physicists have used the knowledge acquired in matter and space to imagine a standard scenario to provide satisfactory answers to these major questions. The dominant thought to explain the absence of antimatter in nature is that we had an initially symmetrical universe made of matter and antimatter and that a dissymmetry would have sufficed for more matter having constituted our world than antimatter. This dissymmetry would arise from an anomaly in the number of neutrinos resulting from nuclear reactions which suggest the existence of a new type of titanic neutrino who would exceed the possibilities of the standard model and would justify the absence of antimatter in the macrocosm. We believe that another scenario could better explain why we observe only matter. It involves the validation of the negative energy solution of the Dirac equation, itself derived from the Einstein energy equation. The theory of Relation describes a negative energy ocean with the creation of real particle/antiparticle pairs. The origin of the masses of the particles would come from this ocean. A physical mechanism would allow their separation in the opposite direction and, therefore, the matter would be enriched at the expense of the ocean. The matter would be favored without resorting to negation or annihilation of negative energy, without the need for a CP (the behavioral difference between particle and antiparticle) violation that would be responsible for matter/antimatter asymmetry in the universe. And without the savior contribution of an undetectable obese neutrino: his search appears to us more a desperate act towards an “ultra-massive catastrophe” than a real effort to try to discover what really happened.展开更多
Under the direction of the principle of interaction between plastic volumetric and shear strains, the general expression of constitutive relation for geotechnical materials has been derived within the framework of irr...Under the direction of the principle of interaction between plastic volumetric and shear strains, the general expression of constitutive relation for geotechnical materials has been derived within the framework of irreversible thermo- dynamics. The constitutive modeling, in fact, is an inverse problem that belongs to the medium inverse problems of model identification, which is expressed as a reversion of coefficient of differential equation. Thus the constitutive modeling of geotechnical materials will become the reversion of coefficient functions of the general expression of constitutive relation, which is carried out in the stress field (p,q) by means Of numerical techniques, so that is called numerical modeling. Applying the numerical modeling, a number of plasticity-based models for clay and sand have been obtained, which are able to characterize the fundamental features of deformation for geotechnieal materials. In addition, the approach of numerical modeling also can be applied to the situation of unsaturated soils by means of the Bishop's effective stress formula and Khalili's expression of effective stress parameter.展开更多
In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and pro...In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.展开更多
By using function one direction S-rough sets (function one direction singular rough sets), this article presents the concepts of F-law, F-rough law, and the relation metric of rough law; by using these concepts, thi...By using function one direction S-rough sets (function one direction singular rough sets), this article presents the concepts of F-law, F-rough law, and the relation metric of rough law; by using these concepts, this article puts forward the theorem of F-law relation metric, two orders theorem of F-rough law relation metric, the attribute theorem of F-rough law band, the extremum theorem of F-rough law relation metric, the discovery principle of F-rough law and the application of F-rough law.展开更多
The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,howeve...The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,however,has not been well understood.It was originally suggested as a fitting constant to explain the black-body radiation.Although Planck had proposed a theoretical justification of h,he was never satisfied with that.To solve this outstanding problem,we use the Maxwell theory to directly calculate the energy and momentum of a radiation wave packet.We find that the energy of the wave packet is indeed proportional to its oscillation frequency.This allows us to derive the value of Planck's constant.Furthermore,we show that the emission and transmission of a photon follows the all-or-none principle.The "strength" of the wave packet can be characterized by ζ,which represents the integrated strength of the vector potential along a transverse axis.We reason that ζ should have a fixed cut-off value for all photons.Our results suggest that a wave packet can behave like a particle.This offers a simple explanation to the recent satellite observations that the cosmic microwave background follows closely the black-body radiation as predicted by Planck's law.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dyn...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dynamics of Reissner sandwich plate can be established systematically. The unconventional Hamilton-type variation principle can fully characterize the initial boundary value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work in dynamics of Reissner sandwich plate, but also to derive systematically the complementary functionals for fivefield, two-field and one-field unconventional Hamilton-type variational principles by the generalized Legender transformations. Furthermore, with this approach, the intrinsic relationship among the various principles can be explained clearly.展开更多
According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrica...According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures are established systematically, which can fully characterize the initial-boundary-value problem of this kind of dynamics. An ifnportant integral relation is made, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on such relationship, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given in this paper, Furthermore, the intrinsic relationship among various principles can be explained clearly with this approach.展开更多
Bohr’s principle of complementarity has a long history and it is an important topic in quantum theory,among which the famous example is the duality relation.The relation between visibilityC and distinguishability D,C...Bohr’s principle of complementarity has a long history and it is an important topic in quantum theory,among which the famous example is the duality relation.The relation between visibilityC and distinguishability D,C2+D2≤1,has long been recognized as the only representative of the duality relation.However,recent researches have shown that this inequality is not good enough because it is not tight for multipath interferometers.Meanwhile,a tight bound for the multipath interferometer has been put forward.Here we design and experimentally implement a three-path interferometer coupling with path indicator states.The wave property of photons is characterized by l1-norm coherence measure,and the particle property is based on distinguishability of the indicator states.The new duality relation of the three-path interferometer is demonstrated in our experiment,which bounds the union of a right triangle and a part of elliptical area inside the quadrant of a unit circle.Data analysis confirms that the new bound is tight for photons in three-path interferometers.展开更多
The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the int...The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.展开更多
Radiometric data from the Pioneer 10/11, Galileo and Ulysses spacecraft indicated an anomalous constant acceleration acting on them, directed toward the Sun, and a gradual growth of the radio signal frequency emitted ...Radiometric data from the Pioneer 10/11, Galileo and Ulysses spacecraft indicated an anomalous constant acceleration acting on them, directed toward the Sun, and a gradual growth of the radio signal frequency emitted by the receding transmitter. The reported odd acceleration of Pioneer 10 with a magnitude?∼8.5 × 10−10 m/s2 can be explained by an induced gravitational interaction on the S-band signals traveling between the probe and the Earth, arising from the electromagnetic properties of the outer Solar System vacuum zero-point radiation interacting with matter. Their nature is of quantum vacuum origin, and these induced forces act in addition to ordinary gravitational forces, violating the principle of Equivalence. We suggest a new physical theory based on a new principle called “Compensation” as a thinkable explanation for the non-conventional Pioneer effect. The theory of Relation, which is an alternative to the inflationist model, postulates that our universe is made of two antagonistic but complementary structures. The principle of Compensation contradicts Relativity theory, predicts such acceleration and is for the electromagnetic spacetime metric what the principle of Equivalence is for the gravific spacetime metric.展开更多
The exploitation of competent electrocatalysts is a key issue of the broad application of many promising electrochemical processes,including the hydrogen evolution reaction(HER),the oxygen evolution reaction(OER),the ...The exploitation of competent electrocatalysts is a key issue of the broad application of many promising electrochemical processes,including the hydrogen evolution reaction(HER),the oxygen evolution reaction(OER),the oxygen reduction reaction(ORR),the CO_(2) reduction reaction(CO_(2)RR)and the nitrogen reduction reaction(NRR).The traditional searches for good electrocatalysts rely on the trial-and-error approaches,which are typically tedious and inefficient.In the past decades,some fundamental principles,activity descriptors and catalytic mechanisms have been established to accelerate the discovery of advanced electrocatalysts.Hence,it is time to summarize these theory-related research advances that unravel the structure-performance relationships and enables predictive ability in electrocatalysis studies.In this review,we summarize some basic aspects of catalytic theories that are commonly used in the design of electrocatalysts(e.g.,Sabatier principle,d-band theory,adsorption-energy scaling relation,activity descriptors)and their relevance.Then,we briefly introduced the fundamental mechanisms and central challenges of HER,OER,ORR,CO_(2)RR and NRR electrocatalysts,and highlight the theory-based efforts used to address the challenges facing these electrocatalysis processes.Finally,we propose the key challenges and opportunities of theory-driven electrocatalysis on their future.展开更多
In this letter,the new concept of Relative Principle Component (RPC) and method of RPC Analysis (RPCA) are put forward. Meanwhile,the concepts such as Relative Transform (RT),Ro-tundity Scatter (RS) and so on are intr...In this letter,the new concept of Relative Principle Component (RPC) and method of RPC Analysis (RPCA) are put forward. Meanwhile,the concepts such as Relative Transform (RT),Ro-tundity Scatter (RS) and so on are introduced. This new method can overcome some disadvantages of the classical Principle Component Analysis (PCA) when data are rotundity scatter. The RPC selected by RPCA are more representative,and their significance of geometry is more notable,so that the application of the new algorithm will be very extensive. The performance and effectiveness are simply demonstrated by the geometrical interpretation proposed.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12271394,11775040,12011530014)the Natural Science Foundation of Shanxi Province+3 种基金China(Grant Nos.201801D221032 and 201801D121016)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2019L0178)the Key Research and Development Program of Shanxi Province(Grant No.202102010101004)the China Scholarship Council。
文摘We investigate the information exclusion principle for multiple measurements with assistance of multiple quantum memories that are well bounded by the upper and lower bounds.The lower bound depends on the observables'complementarity and the complementarity of uncertainty whilst the upper bound includes the complementarity of the observables,quantum discord,and quantum condition entropy.In quantum measurement processing,there exists a relationship between the complementarity of uncertainty and the complementarity of information.In addition,based on the information exclusion principle the complementarity of uncertainty and the shareability of quantum discord can exist as an essential factor to enhance the bounds of each other in the presence of quantum memory.
文摘The Cooperative Principle proposed by Herbert Paul Grice in 1967 requires speakers’utterances to comply with the objective of discourses,while receivers construct assumptions by reasoning speakers’implicatures.He set some maxims and sub-maxims to attempt to explain how the hearers get what is meant from what is said by speakers.What interests me is that the Maxim of Relation only includes one simple annotation—Be relevant without any other sub-maxims.Honestly,this is too obscure.So I would like to analyse Grice’s Maxim of Relation from its definition as well as classification,the discourse-topic and the relationship with context.And,more remarkable,the research method of this article is to explore the essence of the Maxim of Relation based on the opposite side as Dan Sperber and Deirdre Susan Moir Wilson’s the Principle of Relevance(Relevance Theory).
基金The project supported by the National Natural Science Foundation of China
文摘According to the basic idea of dual-complementarity, in a simple and unified way proposed by the author, various energy principles in theory of elastic materials with voids can be established systematically, In this paper, an important integral relation is given, which can be considered essentially as the generalized pr- inciple of virtual work. Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem of work in theory of elastic materials with voids, but also to derive systematically the complementary functionals for the eight-field, six-field, four-field and two-field generalized variational principles, and the principle of minimum potential and complementary energies. Furthermore, with this appro ach, the intrinsic relationship among various principles can be explained clearly.
基金The project supported by the Foundation of Zhongshan University Advanced Research Center
文摘According to the basic idea of dual-complementarity,in a simple and unified way proposed by the author,some basic principles in dynamic theory of elastic materials with voids can be established sys- tematically.In this paper, an important integral relation in terms of convolutions is given,which can be con- sidered as the generalized principle of virtual work in mechanics.Based on this relation,it is possible not on- ly to obtain the principle of virtual work and the reciprocal theorem in dynamic theory of elastic materials with voids,but also to derive systematically the complementary functionals for the eight-field,six-field, four-field and two-field simplified Gurtin-type variational principles.Furthermore,with this approach,the in- trinsic relationship among various principles can be explained clearly.
文摘From the hypotheses that the position-representation of a physical state is the Fourier transform of its momentum-representation and that the timerepresentation is the inverse Fourier transform of its energy-representation, we are able to obtain the Planck relation E = hν , the de Broglie relation p = h /λ , the Dirac fundamental commutation relation, the Schr?dinger equations, the Heisenberg uncertainty principle in quantum mechanics, and the annihilation/creation of a photon from excitation/de-excitation of an atom following Bohr.
文摘A parameter retrieval algorithm based on the causality principle and Kramers-Kronig (KK) relations is employed to calculate the effective parameters of three-dimensional (3D) metamaterials. Using KK relations, the branch selecting problem, which is the challenge of effective parameter retrieval method, can be removed. To reveal the validity of the proposed algorithm, the constitutive refractive index of a homogeneous polymide cube is extracted. The result is in excellent agreement with the intrinsic refractive index of the polymide. Finally, the two terahertz metamaterials with 3D structures are designed and their effective parameters are then retrieved using the proposed algorithm. Numerical simulations are performed using the fuiI-wave electromagnetic solver, CST Microwave Studio.
文摘Where did matter in the universe come from? Where does the mass of matter come from? Particle physicists have used the knowledge acquired in matter and space to imagine a standard scenario to provide satisfactory answers to these major questions. The dominant thought to explain the absence of antimatter in nature is that we had an initially symmetrical universe made of matter and antimatter and that a dissymmetry would have sufficed for more matter having constituted our world than antimatter. This dissymmetry would arise from an anomaly in the number of neutrinos resulting from nuclear reactions which suggest the existence of a new type of titanic neutrino who would exceed the possibilities of the standard model and would justify the absence of antimatter in the macrocosm. We believe that another scenario could better explain why we observe only matter. It involves the validation of the negative energy solution of the Dirac equation, itself derived from the Einstein energy equation. The theory of Relation describes a negative energy ocean with the creation of real particle/antiparticle pairs. The origin of the masses of the particles would come from this ocean. A physical mechanism would allow their separation in the opposite direction and, therefore, the matter would be enriched at the expense of the ocean. The matter would be favored without resorting to negation or annihilation of negative energy, without the need for a CP (the behavioral difference between particle and antiparticle) violation that would be responsible for matter/antimatter asymmetry in the universe. And without the savior contribution of an undetectable obese neutrino: his search appears to us more a desperate act towards an “ultra-massive catastrophe” than a real effort to try to discover what really happened.
文摘Under the direction of the principle of interaction between plastic volumetric and shear strains, the general expression of constitutive relation for geotechnical materials has been derived within the framework of irreversible thermo- dynamics. The constitutive modeling, in fact, is an inverse problem that belongs to the medium inverse problems of model identification, which is expressed as a reversion of coefficient of differential equation. Thus the constitutive modeling of geotechnical materials will become the reversion of coefficient functions of the general expression of constitutive relation, which is carried out in the stress field (p,q) by means Of numerical techniques, so that is called numerical modeling. Applying the numerical modeling, a number of plasticity-based models for clay and sand have been obtained, which are able to characterize the fundamental features of deformation for geotechnieal materials. In addition, the approach of numerical modeling also can be applied to the situation of unsaturated soils by means of the Bishop's effective stress formula and Khalili's expression of effective stress parameter.
文摘In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.
基金supported by the Natural Science Foundation of Shandong Province(Y2007H02)Natural Science Foundation of Fujian Province(S0650031)
文摘By using function one direction S-rough sets (function one direction singular rough sets), this article presents the concepts of F-law, F-rough law, and the relation metric of rough law; by using these concepts, this article puts forward the theorem of F-law relation metric, two orders theorem of F-rough law relation metric, the attribute theorem of F-rough law band, the extremum theorem of F-rough law relation metric, the discovery principle of F-rough law and the application of F-rough law.
基金Project partially supported by the Research Grant Council of Hong Kong,China(Grant No.RGC 660207)the Macro-Science Program,Hong Kong University of Science and Technology,China(Grant No.DCC 00/01.SC01)
文摘The discovery of the Planck relation is generally regarded as the starting point of quantum physics.Planck's constant h is now regarded as one of the most important universal constants.The physical nature of h,however,has not been well understood.It was originally suggested as a fitting constant to explain the black-body radiation.Although Planck had proposed a theoretical justification of h,he was never satisfied with that.To solve this outstanding problem,we use the Maxwell theory to directly calculate the energy and momentum of a radiation wave packet.We find that the energy of the wave packet is indeed proportional to its oscillation frequency.This allows us to derive the value of Planck's constant.Furthermore,we show that the emission and transmission of a photon follows the all-or-none principle.The "strength" of the wave packet can be characterized by ζ,which represents the integrated strength of the vector potential along a transverse axis.We reason that ζ should have a fixed cut-off value for all photons.Our results suggest that a wave packet can behave like a particle.This offers a simple explanation to the recent satellite observations that the cosmic microwave background follows closely the black-body radiation as predicted by Planck's law.
基金Project supported by the National Natural Science Foundation of China(No.10172097)the Doctoral Foundation of Ministry of Education of China(No.20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way proposed by Luo(1987), some uncon ventional Hamilton-type variational principles for dynamics of Reissner sandwich plate can be established systematically. The unconventional Hamilton-type variation principle can fully characterize the initial boundary value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the generalized principle of virtual work in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work in dynamics of Reissner sandwich plate, but also to derive systematically the complementary functionals for fivefield, two-field and one-field unconventional Hamilton-type variational principles by the generalized Legender transformations. Furthermore, with this approach, the intrinsic relationship among the various principles can be explained clearly.
基金Project supported by the National Natural Science Foundation of China(No.10172097)the Doctoral Foundation of Ministry of Education of China(No.20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modem dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear elastodynamics of orthogonal cable-net structures are established systematically, which can fully characterize the initial-boundary-value problem of this kind of dynamics. An ifnportant integral relation is made, which can be considered as the generalized principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures in mechanics. Based on such relationship, it is possible not only to obtain the principle of virtual work for geometrically nonlinear dynamics of orthogonal cable-net structures, but also to derive systematically the complementary functionals for five-field, four-field, three-field and two-field unconventional Hamilton-type variational principles, and the functional for the unconventional Hamilton-type variational principle in phase space and the potential energy functional for one-field unconventional Hamilton-type variational principle for geometrically nonlinear elastodynamics of orthogonal cable-net structures by the generalized Legendre transformation given in this paper, Furthermore, the intrinsic relationship among various principles can be explained clearly with this approach.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0302700 and 2017YFA0304100)the National Natural Science Foundation of China(Grant Nos.11822408,11674304,11774335,61490711,11474267,11821404,11325419,11904356,and 91321313)+5 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2017492)the Foundation for Scientific Instrument and Equipment Development,Chinese Academy of Sciences(Grant No.YJKYYQ20170032)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH003),the Fundamental Research Funds for the Central Universities,China(Grant Nos.WK2470000026 and WK2030000008)Science Foundation of Chinese Academy of Sciences(Grant No.ZDRW-XH-2019-1),Anhui Initiative in Quantum Information Technologies,China(Grant Nos.AHY020100,AHYPT003,and AHY060300)the National Postdoctoral Program for Innovative Talents of China(Grant No.BX20180293)the China Postdoctoral Science Foundation(Grant No.2018M640587).
文摘Bohr’s principle of complementarity has a long history and it is an important topic in quantum theory,among which the famous example is the duality relation.The relation between visibilityC and distinguishability D,C2+D2≤1,has long been recognized as the only representative of the duality relation.However,recent researches have shown that this inequality is not good enough because it is not tight for multipath interferometers.Meanwhile,a tight bound for the multipath interferometer has been put forward.Here we design and experimentally implement a three-path interferometer coupling with path indicator states.The wave property of photons is characterized by l1-norm coherence measure,and the particle property is based on distinguishability of the indicator states.The new duality relation of the three-path interferometer is demonstrated in our experiment,which bounds the union of a right triangle and a part of elliptical area inside the quadrant of a unit circle.Data analysis confirms that the new bound is tight for photons in three-path interferometers.
基金supported by the National Natural Science Foundation of China[grant numbers 41375110,11471244]
文摘The computational uncertainty principle states that the numerical computation of nonlinear ordinary differential equations(ODEs) should use appropriately sized time steps to obtain reliable solutions.However,the interval of effective step size(IES) has not been thoroughly explored theoretically.In this paper,by using a general estimation for the total error of the numerical solutions of ODEs,a method is proposed for determining an approximate IES by translating the functions for truncation and rounding errors.It also illustrates this process with an example.Moreover,the relationship between the IES and its approximation is found,and the relative error of the approximation with respect to the IES is given.In addition,variation in the IES with increasing integration time is studied,which can provide an explanation for the observed numerical results.The findings contribute to computational step-size choice for reliable numerical solutions.
文摘Radiometric data from the Pioneer 10/11, Galileo and Ulysses spacecraft indicated an anomalous constant acceleration acting on them, directed toward the Sun, and a gradual growth of the radio signal frequency emitted by the receding transmitter. The reported odd acceleration of Pioneer 10 with a magnitude?∼8.5 × 10−10 m/s2 can be explained by an induced gravitational interaction on the S-band signals traveling between the probe and the Earth, arising from the electromagnetic properties of the outer Solar System vacuum zero-point radiation interacting with matter. Their nature is of quantum vacuum origin, and these induced forces act in addition to ordinary gravitational forces, violating the principle of Equivalence. We suggest a new physical theory based on a new principle called “Compensation” as a thinkable explanation for the non-conventional Pioneer effect. The theory of Relation, which is an alternative to the inflationist model, postulates that our universe is made of two antagonistic but complementary structures. The principle of Compensation contradicts Relativity theory, predicts such acceleration and is for the electromagnetic spacetime metric what the principle of Equivalence is for the gravific spacetime metric.
文摘The exploitation of competent electrocatalysts is a key issue of the broad application of many promising electrochemical processes,including the hydrogen evolution reaction(HER),the oxygen evolution reaction(OER),the oxygen reduction reaction(ORR),the CO_(2) reduction reaction(CO_(2)RR)and the nitrogen reduction reaction(NRR).The traditional searches for good electrocatalysts rely on the trial-and-error approaches,which are typically tedious and inefficient.In the past decades,some fundamental principles,activity descriptors and catalytic mechanisms have been established to accelerate the discovery of advanced electrocatalysts.Hence,it is time to summarize these theory-related research advances that unravel the structure-performance relationships and enables predictive ability in electrocatalysis studies.In this review,we summarize some basic aspects of catalytic theories that are commonly used in the design of electrocatalysts(e.g.,Sabatier principle,d-band theory,adsorption-energy scaling relation,activity descriptors)and their relevance.Then,we briefly introduced the fundamental mechanisms and central challenges of HER,OER,ORR,CO_(2)RR and NRR electrocatalysts,and highlight the theory-based efforts used to address the challenges facing these electrocatalysis processes.Finally,we propose the key challenges and opportunities of theory-driven electrocatalysis on their future.
基金Supported by the National Natural Science Foundation of China (No.60434020, No.60374020)International Coop-eration Item of Henan Province (No.0446650006)Henan Province Outstanding Youth Science Fund (No.0312001900).
文摘In this letter,the new concept of Relative Principle Component (RPC) and method of RPC Analysis (RPCA) are put forward. Meanwhile,the concepts such as Relative Transform (RT),Ro-tundity Scatter (RS) and so on are introduced. This new method can overcome some disadvantages of the classical Principle Component Analysis (PCA) when data are rotundity scatter. The RPC selected by RPCA are more representative,and their significance of geometry is more notable,so that the application of the new algorithm will be very extensive. The performance and effectiveness are simply demonstrated by the geometrical interpretation proposed.